Impact of model and dose uncertainty on model-based selection of oropharyngeal cancer patients for proton therapy

被引:33
|
作者
Bijman, Rik G. [1 ]
Breedveld, Sebastiaan [1 ]
Arts, Tine [1 ]
Astreinidou, Eleftheria [2 ]
de Jong, Martin A. [2 ]
Granton, Patrick V. [1 ]
Petit, Steven F. [1 ]
Hoogeman, Mischa S. [1 ]
机构
[1] Erasmus MC Canc Inst, Dept Radiat Oncol, POB 5201, NL-3008 AE Rotterdam, Netherlands
[2] LUMC, Dept Radiat Oncol, Leiden, Netherlands
关键词
COMPLICATION PROBABILITY; SETUP UNCERTAINTIES; RADIOTHERAPY; OPTIMIZATION; HEAD; ROBUSTNESS; RANGE;
D O I
10.1080/0284186X.2017.1355113
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Proton therapy is becoming increasingly available, so it is important to apply objective and individualized patient selection to identify those who are expected to benefit most from proton therapy compared to conventional intensity modulated radiation therapy (IMRT). Comparative treatment planning using normal tissue complication probability (NTCP) evaluation has recently been proposed. This work investigates the impact of NTCP model and dose uncertainties on model-based patient selection. Material and Methods: We used IMRT and intensity modulated proton therapy (IMPT) treatment plans of 78 oropharyngeal cancer patients, which were generated based on automated treatment planning and evaluated based on three published NTCP models. A reduction in NTCP of more than a certain threshold (e.g. 10% lower NTCP) leads to patient selection for IMPT, referred to as 'nominal' selection. To simulate the effect of uncertainties in NTCP-model coefficients (based on reported confidence intervals) and planned doses on the accuracy of model-based patient selection, the Monte Carlo method was used to sample NTCP-model coefficients and doses from a probability distribution centered at their nominal values. Patient selection accuracy within a certain sample was defined as the fraction of patients which had similar selection in both the 'nominal' and 'sampled' scenario. Results: For all three NTCP models, the median patient selection accuracy was found to be above 70% when only NTCP-model uncertainty was considered. Selection accuracy decreased with increasing uncertainty resulting from differences between planned and delivered dose. In case of excessive dose uncertainty, selection accuracy decreased to 60%. Conclusion: Model and dose uncertainty highly influence the accuracy of model-based patient selection for proton therapy. A reduction of NTCP-model uncertainty is necessary to reach more accurate model-based patient selection.
引用
收藏
页码:1444 / 1450
页数:7
相关论文
共 50 条
  • [1] The impact of treatment accuracy on proton therapy patient selection for oropharyngeal cancer patients
    Arts, Tine
    Breedveld, Sebastiaan
    de Jong, Martin A.
    Astreinidou, Eleftheria
    Tans, Lisa
    Keskin-Cambay, Fatma
    Krol, Augustinus D. G.
    van de Water, Steven
    Bijman, Rik G.
    Hoogeman, Mischa S.
    RADIOTHERAPY AND ONCOLOGY, 2017, 125 (03) : 520 - 525
  • [2] First experience with model-based selection of head and neck cancer patients for proton therapy
    Tambas, Makbule
    Steenbakkers, Roel J. H. M.
    van der Laan, Hans P.
    Wolters, Atje M.
    Kierkels, Roel G. J.
    Scandurra, Dan
    Korevaar, Erik W.
    Oldehinkel, Edwin
    van Zon-Meijer, Tineke W. H.
    Both, Stefan
    van den Hoek, Johanna G. M.
    Langendijk, Johannes A.
    RADIOTHERAPY AND ONCOLOGY, 2020, 151 : 206 - 213
  • [3] A Model-Based Approach to Predict Short-Term Toxicity Benefits With Proton Therapy for Oropharyngeal Cancer
    Rwigema, Jean-Claude M.
    Langendijk, Johannes A.
    van der Laan, Hans Paul
    Lukens, John N.
    Swisher-McClure, Samuel D.
    Lin, Alexander
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 104 (03): : 553 - 562
  • [4] Proton arc therapy increases the benefit of proton therapy for oropharyngeal cancer patients in the model based clinic
    Jong, Bas A.
    Korevaar, Erik W.
    Maring, Anneke
    Werkman, Chimene I.
    Scandurra, Daniel
    Janssens, Guillaume
    Both, Stefan
    Langendijk, Johannes A.
    RADIOTHERAPY AND ONCOLOGY, 2023, 184
  • [5] Cardiotoxicity model-based patient selection for Hodgkin lymphoma proton therapy
    Loap, Pierre
    Orlandi, Ester
    De Marzi, Ludovic
    Vitolo, Viviana
    Barcellini, Amelia
    Iannalfi, Alberto
    Dendale, Remi
    Kirova, Youlia
    Mirandola, Alfredo
    ACTA ONCOLOGICA, 2022, 61 (08) : 979 - 986
  • [6] Development of advanced preselection tools to reduce redundant plan comparisons in model-based selection of head and neck cancer patients for proton therapy
    Tambas, Makbule
    van der Laan, Hans P.
    Rutgers, Wouter
    van den Hoek, Johanna G. M.
    Oldehinkel, Edwin
    Meijer, Tineke W. H.
    van der Schaaf, Arjen
    Scandurra, Daniel
    Free, Jeffrey
    Both, Stefan
    Steenbakkers, Roel J. H. M.
    Langendijk, Johannes A.
    RADIOTHERAPY AND ONCOLOGY, 2021, 160 : 61 - 68
  • [7] Model-Based Selection for Proton Therapy in Breast Cancer: Development of the National Indication Protocol for Proton Therapy and First Clinical Experiences
    Boersma, L. J.
    Sattler, M. G. A.
    Maduro, J. H.
    Bijker, N.
    Essers, M.
    van Gestel, C. M. J.
    Klaver, Y. L. B.
    Petoukhova, A. L.
    Rodrigues, M. F.
    Russell, N. S.
    van der Schaaf, A.
    Verhoeven, K.
    van Vulpen, M.
    Schuit, E.
    Langendijk, J. A.
    CLINICAL ONCOLOGY, 2022, 34 (04) : 247 - 257
  • [8] Technical note: Optimal allocation of limited proton therapy resources using model-based patient selection
    Papp, David
    Unkelbach, Jan
    MEDICAL PHYSICS, 2022, 49 (08) : 4980 - 4987
  • [9] Robustness Recipes for Minimax Robust Optimization in Intensity Modulated Proton Therapy for Oropharyngeal Cancer Patients
    van der Voort, Sebastian
    van de Water, Steven
    Perko, Zoltan
    Heijmen, Ben
    Lathouwers, Danny
    Hoogeman, Mischa
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 95 (01): : 163 - 170
  • [10] The Quest for Evidence for Proton Therapy: Model-Based Approach and Precision Medicine
    Widder, Joachim
    van der Schaaf, Arjen
    Lambin, Philippe
    Marijnen, Corrie A. M.
    Pignol, Jean-Philippe
    Rasch, Coen R.
    Slotman, Ben J.
    Verheij, Marcel
    Langendijk, Johannes A.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 95 (01): : 30 - 36