Calcium phosphate nanoparticles represent an important object of investigation in the field of biomaterials due to the new properties obtainable at nanoscale. In this work calcium phosphate nanoparticles are obtained by laser ablation of hydroxyapatite (HA) targets in water and in ambient conditions; on the other hand particles of HA are reduced to nanoscale by laser-induced fracture. The results show that nanometric particles of calcium phosphate can be obtained. The morphology and the composition of the obtained particles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and conventional and high resolution transmission electron microscopy (TEM, HRTEM).