Semilinear functional difference equations with infinite delay

被引:19
作者
Agarwal, Ravi P. [1 ]
Cuevas, Claudio [2 ]
Frasson, Miguel V. S. [3 ]
机构
[1] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[2] Univ Fed Pernambuco, Dept Matemat, BR-50540740 Recife, PE, Brazil
[3] Univ Sao Paulo, ICMC, Dept Matemat Aplicada & Estat, BR-13566590 Sao Carlos, SP, Brazil
关键词
Functional difference equations; Infinite delay; Boundedness; Asymptotic behavior; Volterra difference equations; ALMOST-PERIODIC SOLUTIONS; MAXIMAL REGULARITY; ASYMPTOTIC-BEHAVIOR; DISCRETE; CONVERGENT; EXISTENCE; SYSTEMS;
D O I
10.1016/j.mcm.2011.09.033
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We obtain boundedness and asymptotic behavior of solutions for semilinear functional difference equations with infinite delay. Applications to Volterra difference equations with infinite delay are shown. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1083 / 1105
页数:23
相关论文
共 70 条
  • [1] Agarwal R.P., 1992, Monographs and Textbooks in Pure and Applied Mathematics, V155
  • [2] Agarwal RP, 2010, J NONLINEAR CONVEX A, V11, P309
  • [3] PERIODIC-SOLUTIONS OF FIRST-ORDER LINEAR DIFFERENCE-EQUATIONS
    AGARWAL, RP
    POPENDA, J
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1995, 22 (01) : 11 - 19
  • [4] Constant-sign periodic and almost periodic solutions of a system of difference equations
    Agrawal, PR
    O'Regan, D
    Wong, PJY
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (10-12) : 1725 - 1754
  • [5] [Anonymous], MATH ITS APPL
  • [6] [Anonymous], FIELDS I COMMUNICATI
  • [7] [Anonymous], JAPAN J MATH
  • [8] [Anonymous], FUNCT DIFFER EQU
  • [9] [Anonymous], 1995, ABSTRACT LINEAR THEO
  • [10] Arendt W, 2002, Handbook of Differential Equations: Evolutionary Equations, V1, P1, DOI [10.1016/S1874-5717(04)80003-3, DOI 10.1016/S1874-5717(04)80003-3]