Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses

被引:578
作者
Stegle, Oliver [1 ,2 ]
Parts, Leopold [3 ]
Piipari, Matias [4 ]
Winn, John [5 ]
Durbin, Richard [3 ]
机构
[1] Max Planck Inst Intelligent Syst, Tubingen, Germany
[2] Max Planck Inst Dev Biol, Tubingen, Germany
[3] Wellcome Trust Sanger Inst, Cambridge, England
[4] Pear Comp LLP, London, England
[5] Microsoft Res, Cambridge, England
基金
英国惠康基金;
关键词
QUANTITATIVE TRAIT LOCI; ASSOCIATION; NETWORKS; GENOMICS;
D O I
10.1038/nprot.2011.457
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present PEER (probabilistic estimation of expression residuals), a software package implementing statistical models that improve the sensitivity and interpretability of genetic associations in population-scale expression data. This approach builds on factor analysis methods that infer broad variance components in the measurements. PEER takes as input transcript profiles and covariates from a set of individuals, and then outputs hidden factors that explain much of the expression variability. Optionally, these factors can be interpreted as pathway or transcription factor activations by providing prior information about which genes are involved in the pathway or targeted by the factor. The inferred factors are used in genetic association analyses. First, they are treated as additional covariates, and are included in the model to increase detection power for mapping expression traits. Second, they are analyzed as phenotypes themselves to understand the causes of global expression variability. PEER extends previous related surrogate variable models and can be implemented within hours on a desktop computer.
引用
收藏
页码:500 / 507
页数:8
相关论文
共 36 条
  • [1] A map of human genome variation from population-scale sequencing
    Altshuler, David
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Collins, Francis S.
    De la Vega, Francisco M.
    Donnelly, Peter
    Egholm, Michael
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Knoppers, Bartha M.
    Lander, Eric S.
    Lehrach, Hans
    Mardis, Elaine R.
    McVean, Gil A.
    Nickerson, DebbieA.
    Peltonen, Leena
    Schafer, Alan J.
    Sherry, Stephen T.
    Wang, Jun
    Wilson, Richard K.
    Gibbs, Richard A.
    Deiros, David
    Metzker, Mike
    Muzny, Donna
    Reid, Jeff
    Wheeler, David
    Wang, Jun
    Li, Jingxiang
    Jian, Min
    Li, Guoqing
    Li, Ruiqiang
    Liang, Huiqing
    Tian, Geng
    Wang, Bo
    Wang, Jian
    Wang, Wei
    Yang, Huanming
    Zhang, Xiuqing
    Zheng, Huisong
    Lander, Eric S.
    Altshuler, David L.
    Ambrogio, Lauren
    Bloom, Toby
    Cibulskis, Kristian
    Fennell, Tim J.
    Gabriel, Stacey B.
    [J]. NATURE, 2010, 467 (7319) : 1061 - 1073
  • [2] Anders S., 2010, GENOME BIOL, V11, pR106, DOI [10.1186/gb-2010-11-10-r106, DOI 10.1186/gb-2010-11-10-r106]
  • [3] Using genetic markers to orient the edges in quantitative trait networks: The NEO software
    Aten, Jason E.
    Fuller, Tova F.
    Lusis, Aldons J.
    Horvath, Steve
    [J]. BMC SYSTEMS BIOLOGY, 2008, 2
  • [4] Balding DJ., 2007, Handbook of Statistical Genetics
  • [5] Mapping gene expression quantitative trait loci by singular value decomposition and independent component analysis
    Biswas, Shameek
    Storey, John D.
    Akey, Joshua M.
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [6] Genetical Genomics: Spotlight on QTL Hotspots
    Breitling, Rainer
    Li, Yang
    Tesson, Bruno M.
    Fu, Jingyuan
    Wu, Chunlei
    Wiltshire, Tim
    Gerrits, Alice
    Bystrykh, Leonid V.
    de Haan, Gerald
    Su, Andrew I.
    Jansen, Ritsert C.
    [J]. PLOS GENETICS, 2008, 4 (10):
  • [7] Genetic interactions between polymorphisms that affect gene expression in yeast
    Brem, RB
    Storey, JD
    Whittle, J
    Kruglyak, L
    [J]. NATURE, 2005, 436 (7051) : 701 - 703
  • [8] Genetic dissection of transcriptional regulation in budding yeast
    Brem, RB
    Yvert, G
    Clinton, R
    Kruglyak, L
    [J]. SCIENCE, 2002, 296 (5568) : 752 - 755
  • [9] R/qtl: QTL mapping in experimental crosses
    Broman, KW
    Wu, H
    Sen, S
    Churchill, GA
    [J]. BIOINFORMATICS, 2003, 19 (07) : 889 - 890
  • [10] Genetics of human gene expression: mapping DNA variants that influence gene expression
    Cheung, Vivian G.
    Spielman, Richard S.
    [J]. NATURE REVIEWS GENETICS, 2009, 10 (09) : 595 - 604