Artificial intelligence in computational materials science

被引:4
作者
Kulik, Heather J. [1 ]
Tiwary, Pratyush [2 ,3 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
关键词
Artificial intelligence; Data sciences; Materials science;
D O I
10.1557/s43577-022-00431-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this themed collection we aim to broadly review some of the critical, recent progress in the application of AI/ML to various aspects of computational materials science and materials science more broadly. In this collection spread across two issues, we have assembled a collection of articles from leaders in the broad domain of applying AI/ML, which we collectively refer to as ML, in computational materials science. Together these articles curate the critical, recent progress in the application of ML to various aspects of materials science. These include ML approaches for understanding and driving electron microscopy, designing energy materials and the discovery of principles and materials relevant to the design of materials for the future, studying crystal nucleation and growth, the use of ML to describe force fields governing material and molecular behavior, and other topics.
引用
收藏
页码:927 / 929
页数:3
相关论文
共 21 条
[1]  
Annevelink, MRS BULL
[2]   Adding Stochastic Negative Examples into Machine Learning Improves Molecular Bioactivity Prediction [J].
Caceres, Elena L. ;
Mew, Nicholas C. ;
Keiser, Michael J. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) :5957-5970
[3]  
Ceriotti, MRS BULL
[4]  
Clements, MRS BULL
[5]   Anthropogenic biases in chemical reaction data hinder exploratory inorganic synthesis [J].
Jia, Xiwen ;
Lynch, Allyson ;
Huang, Yuheng ;
Danielson, Matthew ;
Lang'at, Immaculate ;
Milder, Alexander ;
Ruby, Aaron E. ;
Wang, Hao ;
Friedler, Sorelle A. ;
Norquist, Alexander J. ;
Schrier, Joshua .
NATURE, 2019, 573 (7773) :251-+
[6]  
Jiang W., 2021, PREPRINT
[7]  
Kalinin, 2022, MRS BULL, V47
[8]   Pushing the frontiers of density functionals by solving the fractional electron problem [J].
Kirkpatrick, James ;
McMorrow, Brendan ;
Turban, David H. P. ;
Gaunt, Alexander L. ;
Spencer, James S. ;
Matthews, Alexander G. D. G. ;
Obika, Annette ;
Thiry, Louis ;
Fortunato, Meire ;
Pfau, David ;
Castellanos, Lara Roman ;
Petersen, Stig ;
Nelson, Alexander W. R. ;
Kohli, Pushmeet ;
Mori-Sanchez, Paula ;
Hassabis, Demis ;
Cohen, Aron J. .
SCIENCE, 2021, 374 (6573) :1385-+
[9]   Opportunities and challenges of text mining in materials research [J].
Kononova, Olga ;
He, Tanjin ;
Huo, Haoyan ;
Trewartha, Amalie ;
Olivetti, Elsa A. ;
Ceder, Gerbrand .
ISCIENCE, 2021, 24 (03)
[10]   Kinetic network models to study molecular self-assembly in the wake of machine learning [J].
Liu, Bojun ;
Qiu, Yunrui ;
Goonetilleke, Eshani C. ;
Huang, Xuhui .
MRS BULLETIN, 2022, 47 (09) :958-966