On the solvability of nonlinear Sturm-Liouville problems

被引:15
作者
Rodriguez, Jesus [1 ]
Abernathy, Zachary [1 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
Boundary value problems; Schauder Fixed Point Theorem; Global Inverse Function Theorem; Sturm-Liouville; BOUNDARY-VALUE-PROBLEMS; DIFFERENTIAL-EQUATIONS; EXISTENCE;
D O I
10.1016/j.jmaa.2011.08.079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The focus of this paper is the study of nonlinear differential equations subject to general non-local boundary conditions. To establish sufficient conditions for the existence of solutions, we use properties of the nonlinearities and their relationship with the eigenvalues of an associated linear Sturm-Liouville problem. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:310 / 319
页数:10
相关论文
共 32 条
[1]   ON MULTIPOINT BOUNDARY-VALUE-PROBLEMS FOR DISCRETE EQUATIONS [J].
AGARWAL, RP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 96 (02) :520-534
[2]   Existence of Solutions for Nonlocal Boundary Value Problems of Higher-Order Nonlinear Fractional Differential Equations [J].
Ahmad, Bashir ;
Nieto, Juan J. .
ABSTRACT AND APPLIED ANALYSIS, 2009,
[3]   Elliptic boundary value problems with λ-dependent boundary conditions [J].
Behrndt, Jussi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (11) :2663-2687
[4]   Second-Order Boundary Value Problem with Integral Boundary Conditions [J].
Benchohra, Mouffak ;
Nieto, Juan J. ;
Ouahab, Abdelghani .
BOUNDARY VALUE PROBLEMS, 2011,
[5]   NON-LINEAR 3-POINT BOUNDARY-VALUE-PROBLEMS [J].
BOUCHERIF, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 77 (02) :577-600
[6]  
Brown K., 1975, Annali di Matematica Pura ed Applicata, V106, P205
[7]  
Brown K., 1980, Nonlinear Analysis: Theory, Methods Applications, V4, P193
[8]   Existence of Solutions for Impulsive Neutral Integro-Differential Inclusions with Nonlocal Initial Conditions via Fractional Operators [J].
Chang, Yong-Kui ;
Nieto, Juan J. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (3-4) :227-244
[9]  
Chow S.-N., 2012, Methods of Bifurcation Theory, V251