Genome-wide association studies of antidepressant outcome: A brief review

被引:34
|
作者
Laje, Gonzalo [1 ]
McMahon, Francis J. [1 ]
机构
[1] NIMH, Human Genet Branch, Intramural Res Program, NIH,US DHHS, Bethesda, MD 20892 USA
关键词
Antidepressant treatment outcome; Genome-wide association; GWAS; Pharmacogenetics; Pharmacogenomics; GENE PROMOTER POLYMORPHISM; STAR-ASTERISK-D; MAJOR DEPRESSION; PHARMACOGENETICS; METAANALYSIS; CITALOPRAM; IMPUTATION; EFFICACY;
D O I
10.1016/j.pnpbp.2010.11.031
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Genome-wide association studies (GWAS) of antidepressant treatment outcome have been at the forefront of psychiatric pharmacogenetics. Such studies may ultimately help match medications with patients, maximizing efficacy while minimizing adverse effects. The hypothesis-free approach of the GWAS has the advantage of interrogating genes that otherwise would have not been considered as candidates due to our limited understanding of their function, and may also uncover important regulatory variation within the large regions of the genome that do not contain protein-coding genes. Three independent samples have so far been studied using a genome-wide approach: The Sequenced Treatment Alternatives to Relieve Depression sample (STAR*D) (n = 1953), the Munich Antidepressant Response Signature (MARS) sample (n = 339) and the Genome-based Therapeutic Drugs for Depression (GENDEP) sample (n = 706). None of the studies reported results that achieved genome-wide significance, suggesting that larger samples and better outcome measures will be needed. This review discusses the published GWAS studies, their strengths, limitations, and possible future directions. Published by Elsevier Inc.
引用
收藏
页码:1553 / 1557
页数:5
相关论文
共 50 条
  • [21] Trio Genome-Wide Association Studies
    Badini, Isabella
    Davies, Neil
    BEHAVIOR GENETICS, 2024, 54 (06) : 548 - 549
  • [22] Genome-Wide Association Studies in Atherosclerosis
    S. Sivapalaratnam
    M. M. Motazacker
    S. Maiwald
    G. K. Hovingh
    J. J. P. Kastelein
    M. Levi
    M. D. Trip
    G. M. Dallinga-Thie
    Current Atherosclerosis Reports, 2011, 13 : 225 - 232
  • [23] Genome-Wide Association Studies in Atherosclerosis
    Sivapalaratnam, S.
    Motazacker, M. M.
    Maiwald, S.
    Hovingh, G. K.
    Kastelein, J. J. P.
    Levi, M.
    Trip, M. D.
    Dallinga-Thie, G. M.
    CURRENT ATHEROSCLEROSIS REPORTS, 2011, 13 (03) : 225 - 232
  • [24] Review of genome-wide association study
    Zhang, Xuejun
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (08): : 671 - 683
  • [25] Replication in Genome-Wide Association Studies
    Kraft, Peter
    Zeggini, Eleftheria
    Ioannidis, John P. A.
    STATISTICAL SCIENCE, 2009, 24 (04) : 561 - 573
  • [26] Genome-wide association studies: a primer
    Corvin, A.
    Craddock, N.
    Sullivan, P. F.
    PSYCHOLOGICAL MEDICINE, 2010, 40 (07) : 1063 - 1077
  • [27] Quality Control Procedures for Genome-Wide Association Studies
    Truong, Van Q.
    Woerner, Jakob A.
    Cherlin, Tess A.
    Bradford, Yuki
    Lucas, Anastasia M.
    Okeh, Chelsea C.
    Shivakumar, Manu K.
    Hui, Daniel H.
    Kumar, Rachit
    Pividori, Milton
    Jones, S. Chris
    Bossa, Abigail C.
    Turner, Stephen D.
    Ritchie, Marylyn D.
    Verma, Shefali S.
    CURRENT PROTOCOLS, 2022, 2 (11):
  • [28] Genome-wide association studies of maximum number of drinks
    Pan, Yue
    Luo, Xingguang
    Liu, Xuefeng
    Wu, Long-Yang
    Zhang, Qunyuan
    Wang, Liang
    Wang, Weize
    Zuo, Lingjun
    Wang, Ke-Sheng
    JOURNAL OF PSYCHIATRIC RESEARCH, 2013, 47 (11) : 1717 - 1724
  • [29] Genome-wide association studies and resting heart rate
    Kilpelainen, Tuomas O.
    JOURNAL OF ELECTROCARDIOLOGY, 2016, 49 (06) : 860 - 863
  • [30] Systematic review of genome-wide association studies of abdominal aortic aneurysm
    Singh, Tejas P.
    Field, Matt A.
    Bown, Matthew J.
    Jones, Gregory T.
    Golledge, Jonathan
    ATHEROSCLEROSIS, 2021, 327 : 39 - 48