Non linear vibrations of imperfect fluid-filled viscoelastic cylindrical shells

被引:13
作者
del Prado, Zenon J. G. N. [1 ]
Amabili, Marco [2 ]
Goncalves, Paulo B. [3 ]
机构
[1] Univ Fed Goias, Escola Engn Civil, Setor Univ, Ave Univ,S-N, BR-74605200 Goiania, Go, Brazil
[2] McGill Univ, Dept Mech Engn, 817 Sherbrooke St West, Montreal, PQ H3A 0C3, Canada
[3] Pontificia Univ Catolica Rio de Janeiro, Dept Civil Engn, Rua Marques Sao Vicente,225, BR-22453900 Rio De Janeiro, RJ, Brazil
来源
X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017) | 2017年 / 199卷
基金
加拿大自然科学与工程研究理事会;
关键词
Cylindrical shells; viscoelastic material; Kelvin-Voigt model; lateral loads; Fluid-Structure Interaction; NONLINEAR VIBRATIONS; DYNAMIC STABILITY; ACCOUNT; INERTIA; PANEL;
D O I
10.1016/j.proeng.2017.09.175
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this work the effect of geometric imperfections on the non-linear dynamics of simply supported viscoelastic fluid-filled circular cylindrical shells subjected to lateral harmonic load is studied. Donnell's non-linear shallow shell theory is used to model the shell, assumed to be made of a Kelvin-Voigt material type, and a modal solution with eight degrees of freedom is used to describe the lateral displacements. The Galerkin method is applied to derive a set of coupled non-linear ordinary differential equations of motion. The influence of shell geometry, flow velocity and dissipation parameter are studied and special attention is given to resonance curves and bifurcation diagrams. Obtained results show that geometric imperfections together with the viscoelastic dissipation parameter and internal fluid have significant influence on the nonlinear dynamic behavior of the shells as displayed in resonance curves. (c) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:570 / 576
页数:7
相关论文
共 15 条
[1]   Non-linear vibrations of shells: A literature review from 2003 to 2013 [J].
Alijani, Farbod ;
Amabili, Marco .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2014, 58 :233-257
[2]   Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid.: Part I:: Stability [J].
Amabili, M ;
Pellicano, F ;
Païdoussis, MP .
JOURNAL OF SOUND AND VIBRATION, 1999, 225 (04) :655-699
[3]   Forced Radial Motions of Nonlinearly Viscoelastic Shells [J].
Antman, Stuart S. ;
Lacarbonara, Walter .
JOURNAL OF ELASTICITY, 2009, 96 (02) :155-190
[4]  
Balasubramanian P., 2016, INT J NONLINEAR MECH
[5]   Postbuckling analysis of imperfect non-linear viscoelastic cylindrical panels [J].
Cederbaum, G ;
Touati, D .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2002, 37 (4-5) :757-762
[6]   Dynamical behavior of viscoelastic cylindrical shells under axial pressures [J].
Cheng, CJ ;
Zhang, NH .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2001, 22 (01) :1-9
[7]   Nonlinear vibrations of viscoelastic cylindrical shells taking into account shear deformation and rotatory inertia [J].
Eshmatov, B. Kh. .
NONLINEAR DYNAMICS, 2007, 50 (1-2) :353-361
[8]   Non-linear vibration and dynamic stability of a viscoelastic cylindrical panel with concentrated mass [J].
Eshmatov, B. Kh. ;
Khodjaev, D. A. .
ACTA MECHANICA, 2007, 190 (1-4) :165-183
[9]   Nonlinear vibrations and dynamic stability of a viscoelastic circular cylindrical shell with shear strain and inertia of rotation taken into account [J].
Eshmatov, B. Kh. .
MECHANICS OF SOLIDS, 2009, 44 (03) :421-434
[10]   DYNAMIC STABILITY OF A VISCOELASTIC CYLINDRICAL PANEL WITH CONCENTRATED MASSES [J].
Eshmatov, B. Kh. ;
Khodzhaev, D. A. .
STRENGTH OF MATERIALS, 2008, 40 (04) :491-502