DYNAMICAL ANALYSIS OF A DIFFUSIVE SIRS MODEL WITH GENERAL INCIDENCE RATE

被引:12
作者
Yang, Yu [1 ]
Zou, Lan [2 ]
Zhang, Tonghua [3 ]
Xu, Yancong [4 ]
机构
[1] Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201209, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
[3] Swinburne Univ Technol, Dept Math, Hawthorn, Vic 3122, Australia
[4] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2020年 / 25卷 / 07期
基金
中国国家自然科学基金;
关键词
General incidence; spatial heterogeneity; uniform persistence; global stability; INFECTIOUS-DISEASE MODELS; NONLINEAR INCIDENCE RATE; GLOBAL WELL-POSEDNESS; EPIDEMIC MODEL; THRESHOLD DYNAMICS; SUPERINFECTING VIRIONS; TRANSMISSION DYNAMICS; INCUBATION PERIOD; STEADY-STATES; LATENT PERIOD;
D O I
10.3934/dcdsb.2020017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a diffusive SIRS model with general incidence rate and spatial heterogeneity. The formula of the basic reproduction number R-0 is given. Then the threshold dynamics, including globally attractive of the disease-free equilibrium and uniform persistence, are established in terms of R-0. Special cases and numerical simulations are presented to support our main results.
引用
收藏
页码:2433 / 2451
页数:19
相关论文
共 52 条
[1]   Periodicity in an epidemic model with a generalized non-linear incidence [J].
Alexander, ME ;
Moghadas, SM .
MATHEMATICAL BIOSCIENCES, 2004, 189 (01) :75-96
[2]  
Allen LJS, 2008, DISCRETE CONT DYN-A, V21, P1
[3]   POPULATION BIOLOGY OF INFECTIOUS-DISEASES .1. [J].
ANDERSON, RM ;
MAY, RM .
NATURE, 1979, 280 (5721) :361-367
[4]   Spatiotemporal transmission dynamics for influenza disease in a heterogenous environment [J].
Cai, Yongli ;
Lian, Xinze ;
Peng, Zhihang ;
Wang, Weiming .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 46 :178-194
[5]   GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V ;
SERIO, G .
MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) :43-61
[6]   Effects of spatial grouping on the functional response of predators [J].
Cosner, C ;
DeAngelis, DL ;
Ault, JS ;
Olson, DB .
THEORETICAL POPULATION BIOLOGY, 1999, 56 (01) :65-75
[7]   FUNCTIONAL-RESPONSES AND INTERFERENCE WITHIN AND BETWEEN YEAR CLASSES OF A DRAGONFLY POPULATION [J].
CROWLEY, PH ;
MARTIN, EK .
JOURNAL OF THE NORTH AMERICAN BENTHOLOGICAL SOCIETY, 1989, 8 (03) :211-221
[8]   Travelling waves of a delayed SIRS epidemic model with spatial diffusion [J].
Gan, Qintao ;
Xu, Rui ;
Yang, Pinghua .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) :52-68
[9]   Threshold dynamics of an infective disease model with a fixed latent period and non-local infections [J].
Guo, Zhiming ;
Wang, Feng-Bin ;
Zou, Xingfu .
JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 65 (6-7) :1387-1410
[10]  
HETHCOTE H W, 1976, Mathematical Biosciences, V28, P335, DOI 10.1016/0025-5564(76)90132-2