Partial regularity of minimizers of asymptotically convex functionals with p(x)-growth

被引:0
作者
Goodrich, Christopher S. [1 ]
Scapellato, Andrea [2 ]
机构
[1] UNSW Sydney, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
关键词
partial regularity; Holder continuity; irregular growth; variable growth; asymptotic relatedness; PARTIAL HOLDER CONTINUITY; LIPSCHITZ REGULARITY; BOUNDARY-REGULARITY; SINGULAR SET; CALCULUS; P(X)-ENERGY; MINIMA; INTEGRABILITY; INTEGRALS; EQUATIONS;
D O I
10.4064/sm210104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider vectorial minimizers of the integral functional integral(Omega)f(x, u, Du) dx, where the function (x, u, xi) bar right arrow f(x, u, xi) is asymptotically related to a simpler function (x, u, xi) bar right arrow alpha(x, u)vertical bar xi vertical bar(p(x)). Thus, we consider asymptotically convex integral functionals in the p(x)-growth setting. We demonstrate that minimizers are almost everywhere Holder continuous, in a manner that mimics that simpler p-growth setting.
引用
收藏
页数:32
相关论文
共 64 条
[1]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[2]  
Acerbi E., 2001, Ann. Della Scuola Norm. Super. Pisa-Cl. Sci., V30, P311
[3]  
[Anonymous], 2010, Partial Differential Equations
[4]  
[Anonymous], 2003, Direct Methods in the Calculus of Variations, DOI DOI 10.1142/5002
[5]  
[Anonymous], 2006, Appl. Math., DOI DOI 10.1007/S10778-006-0110-3
[6]  
[Anonymous], 1996, Ann. Sc. Norm. Super. Pisa Cl. Sci.
[7]  
[Anonymous], 1968, Boll. Unione Mat. Ital.
[8]   LINEARIZATION AT INFINITY AND LIPSCHITZ ESTIMATES FOR CERTAIN PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
CHIPOT, M ;
EVANS, LC .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1986, 102 :291-303
[9]   Holder continuity of the gradient of p(x)-harmonic mappings [J].
Coscia, A ;
Mingione, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (04) :363-368
[10]   Holder continuity of local minimizers [J].
Cupini, G ;
Fusco, N ;
Petti, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 235 (02) :578-597