Autonomous Maneuver Targeting Around Small Bodies Using Continuous-Thrust Propulsion

被引:3
作者
Kuettel, Donald H. H. [1 ]
McMahon, Jay W. [1 ]
机构
[1] Univ Colorado, Orbital Res Cluster Celestial Applicat, Smead Dept Aerosp Engn, Boulder, CO 80303 USA
关键词
Thrust; Propulsion System; Optimal Impulsive Maneuvers; Broyden Fletcher Goldfarb Shanno; Guidance Laws; Asteroids; Lambert Algorithm; Spacecraft Trajectories; Sparse Nonlinear Optimizer; Algorithms Convergence; MODEL-PREDICTIVE CONTROL; SPACECRAFT PROXIMITY; GUIDANCE; OPTIMIZATION; DOCKING; NAVIGATION;
D O I
10.2514/1.G006213
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents a novel fuel-efficient continuous-thrust maneuver targeting (CTMT) algorithm that is capable of planning finite, continuous maneuvers in a larger autonomous spacecraft guidance architecture. This is accomplished using a constant-thrust bilinear tangent guidance law in conjunction with an optimal Lambert algorithm and a Newton-Raphson predictor-corrector targeting scheme. This simple approach is capable of planning a plethora of different free-time and fixed-time single-burn, burn-coast intercept, or burn-coast-burn bilinear tangent maneuvers from an initial state/orbit to a desired state/orbit. For the study case of asteroid Bennu, when used with thrust levels that are greater than 5% of the surface acceleration of asteroid Bennu, the CTMT algorithm is able to converge on 99% of orbital transfers initiated from a circular, 1.5 km, terminator orbit. Furthermore, many of the continuous-thrust maneuvers calculated by the CTMT algorithm are the optimal constant-thrust trajectories between two states in the small-body dynamical environment, and they are able to be calculated hundreds of times faster with the CTMT algorithm than with state-of-the-art nonlinear optimization algorithms. Ultimately, the CTMT algorithm shows promise as a candidate for future autonomous guidance applications.
引用
收藏
页码:499 / 516
页数:18
相关论文
共 42 条
[1]   Convex programming approach to powered descent guidance for Mars landing [J].
Acikmese, Behcet ;
Ploen, Scott R. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2007, 30 (05) :1353-1366
[2]   AN ELEGANT LAMBERT ALGORITHM [J].
BATTIN, RH ;
VAUGHAN, RM .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1984, 7 (06) :662-670
[3]   Direct trajectory optimization and costate estimation via an orthogonal collocation method [J].
Benson, David A. ;
Huntington, Geoffrey T. ;
Thorvaldsen, Tom P. ;
Rao, Anil V. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2006, 29 (06) :1435-1440
[4]   Survey of numerical methods for trajectory optimization [J].
Betts, JT .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1998, 21 (02) :193-207
[5]   Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft [J].
Bevilacqua, R. ;
Lehmann, T. ;
Romano, M. .
ACTA ASTRONAUTICA, 2011, 68 (7-8) :1260-1275
[6]  
Bock H. G., 1984, IFAC Proceedings, V17, P1603, DOI 10.1016/S1474-6670(17)61205-9
[7]   Time-Optimal Reorientation of a Spacecraft Using an Inverse Dynamics Optimization Method [J].
Boyarko, George A. ;
Romano, Marcello ;
Yakimenko, Oleg A. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2011, 34 (04) :1197-1208
[8]  
Brusch R., 1979, GUID CONTR C, DOI [10.2514/6.1979-1730, DOI 10.2514/6.1979-1730]
[9]   Model Predictive Control approach for guidance of spacecraft rendezvous and proximity maneuvering [J].
Di Cairano, S. ;
Park, H. ;
Kolmanovsky, I. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2012, 22 (12) :1398-1427
[10]   The rubble-pile asteroid Itokawa as observed by Hayabusa [J].
Fujiwara, A. ;
Kawaguchi, J. ;
Yeomans, D. K. ;
Abe, M. ;
Mukai, T. ;
Okada, T. ;
Saito, J. ;
Yano, H. ;
Yoshikawa, M. ;
Scheeres, D. J. ;
Barnouin-Jha, O. ;
Cheng, A. F. ;
Demura, H. ;
Gaskell, R. W. ;
Hirata, N. ;
Ikeda, H. ;
Kominato, T. ;
Miyamoto, H. ;
Nakamura, A. M. ;
Nakamura, R. ;
Sasaki, S. ;
Uesugi, K. .
SCIENCE, 2006, 312 (5778) :1330-1334