Low-cost control problems on perforated and non-perforated domains

被引:8
作者
Kesavan, S. [1 ]
Muthukumar, T. [1 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2008年 / 118卷 / 01期
关键词
homogenization; H-convergence; optimal control;
D O I
10.1007/s12044-008-0008-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the homogenization of a class of optimal control problems whose state equations are given by second order elliptic boundary value problems with oscillating coefficients posed on perforated and non-perforated domains. We attempt to describe the limit problem when the cost of the control is also of the same order as that describing the oscillations of the coefficients. We study the situations where the control and the state are both defined over the entire domain or when both are defined on the boundary.
引用
收藏
页码:133 / 157
页数:25
相关论文
共 12 条
[1]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI
[2]   Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains [J].
Dal Maso, G ;
Murat, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (04) :445-486
[3]  
DALMASO G, 1993, PROGR NONLINEAR DIFF, V8
[4]  
HRUSLOV EJ, 1979, MATH USSR SB+, V35, P266, DOI 10.1070/SM1979v035n02ABEH001474
[5]  
Kesavan S, 2002, APPL OPTIMIZAT, V72, P251
[6]   Homogenization of an optimal control problem [J].
Kesavan, S ;
Paulin, JSJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (05) :1557-1573
[7]   Optimal control on perforated domains [J].
Kesavan, S ;
Paulin, JS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 229 (02) :563-586
[8]  
LIONS JL, 1973, TOPICS NUMERICAL ANA, P203
[9]  
Meyers N. G., 1963, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V17, P189
[10]  
MURAT F, 1981, J MATH PURE APPL, V60, P309