EVALUATION OF TRANSFORMERS AND CONVOLUTIONAL NEURAL NETWORKS FOR HIGH-DIMENSIONAL HYPERSPECTRAL SOIL TEXTURE CLASSIFICATION

被引:2
作者
Kuehnlein, L. [1 ]
Keller, S. [2 ]
机构
[1] Ci Tec GmbH Karlsruhe, Karlsruhe, Germany
[2] KIT, Inst Photogrammetry & Remote Sensing IPF, Karlsruhe, Germany
来源
2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS) | 2022年
关键词
Deep Learning; High-Dimensional Data; Soil Properties; LUCAS Dataset; MultiTemporal; EnMAP; Deep Ensemble;
D O I
10.1109/WHISPERS56178.2022.9955087
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Soil texture is an important parameter influencing a multitude of ecosystem services. However, its determination in the laboratory is complex, time-consuming, and only reveals soil texture at a specific sampling point. Therefore, topsoil soil texture determined from space-borne remote sensing data offers advantages (areal and temporal availability, expanding possibilities with upcoming hyperspectral satellite systems). Since no hyperspectral satellite data are available, we use hyperspectral reflectance data provided in the Land Use/Land Cover Area Frame Survey (LUCAS) dataset by the European Soil Data Centre. We resample the provided 4200 bands to the Environmental Mapping and Analysis Program (EnMAP) Resolution of 222 bands. Hereafter, we classify soil texture as sandy, silty, clayey, and loamy from these by applying distinct Transformer architecture as well as a one-dimensional convolutional neural network. Our best models multitemporal SimpleVIT and an ensemble approach score 65.89 % and 67.62 % overall accuracy, respectively.
引用
收藏
页数:5
相关论文
共 22 条
  • [1] Amelung W., 2018, SCHEFFER SCHACHTSCHA
  • [2] Beyer L., 2022, Better plain ViT baselines for ImageNet-1k
  • [3] Emerging Properties in Self-Supervised Vision Transformers
    Caron, Mathilde
    Touvron, Hugo
    Misra, Ishan
    Jegou, Herve
    Mairal, Julien
    Bojanowski, Piotr
    Joulin, Armand
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9630 - 9640
  • [4] Chen Chun-Fu, 2021, RegionViT: Regional-to-Local Attention for Vision Transformers
  • [5] Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]
  • [6] European Soil Data Centre, 2015, EUROPEAN COMMISSION
  • [7] Graham B., 2021, Levit: a vision transformer in convnet's clothing for faster inference
  • [8] Hassani A., 2021, Escaping the big data paradigm with compact transformers
  • [9] Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Xin
    Chen, Yushi
    Lin, Zhouhan
    [J]. REMOTE SENSING, 2021, 13 (03) : 1 - 22
  • [10] Hong Danfeng, 2022, Spec- tralFormer: Rethinking Hyperspectral Image Classifica- tion With Transformers, V60, P1