Numerical methods for improved efficiency in macrosegregation modeling

被引:2
|
作者
Sajja, Udaya K. [2 ,3 ]
Felicelli, Sergio D. [2 ,3 ]
Heinrich, Juan C. [1 ]
机构
[1] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA
[2] Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA
[3] Mississippi State Univ, Ctr Adv Vehicular Syst, Mississippi State, MS 39762 USA
基金
美国国家科学基金会;
关键词
macrosegregation; freckles; projection method; element-free Galerkin; adaptive mesh refinement; FREE GALERKIN METHOD; SMOOTHED PARTICLE HYDRODYNAMICS; BINARY ALLOY SOLIDIFICATION; PHASE CHANGE SYSTEMS; FLUID-FLOW; INTERDENDRITIC LIQUID; SPECIES TRANSPORT; FRECKLE FORMATION; CONTINUUM MODEL; HEAT;
D O I
10.1002/nme.3027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
New algorithms developed for the simulation of macrosegregation in directionally solidified alloys are presented. The work has been motivated by the inefficiency of models that have been used in the past. Three different developments are reported, the use of a fractional step projection finite element method to solve the momentum equations, the use of mesh-less element free Galerkin formulations, and the combination of the Galerkin finite element method with adaptive mesh refinement. The formulation of the different algorithms is given and a two-dimensional example of application in which the efficiency of the methods is compared is presented. The results of a three-dimensional calculation using the Galerkin finite element method show that very significant gains are effected when compared with previously published simulations. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:196 / 213
页数:18
相关论文
共 50 条
  • [41] Towards Evaluating Efficiency of Enterprise Modeling Methods
    Khademhosseinieh, Banafsheh
    Seigerroth, Ulf
    INFORMATION AND SOFTWARE TECHNOLOGIES, 2012, 319 : 74 - 86
  • [42] Numerical simulation of macrosegregation during solidification of binary alloys
    Wu-Tao Tu
    Hou-Fa Shen
    Bai-Cheng Liu
    Rare Metals, 2016, 35 (08) : 591 - 597
  • [43] Numerical simulation of macrosegregation during solidification of binary alloys
    Tu, Wu-Tao
    Shen, Hou-Fa
    Liu, Bai-Cheng
    RARE METALS, 2016, 35 (08) : 591 - 597
  • [44] Improved modeling of clinical data with kernel methods
    Daemen, Anneleen
    Timmerman, Dirk
    Van den Bosch, Thierry
    Bottomley, Cecilia
    Kirk, Emma
    Van Holsbeke, Caroline
    Valentin, Lil
    Bourne, Tom
    De Moor, Bart
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2012, 54 (02) : 103 - 114
  • [45] Methods of Numerical Modeling of a Railgun with Magnetization Turns
    M. P. Galanin
    A. K. Kondratenko
    V. V. Lukin
    A. S. Rodin
    D. L. Sorokin
    Journal of Engineering Physics and Thermophysics, 2019, 92 : 820 - 828
  • [46] Mathematical Modeling, Numerical Methods and Software Complexes
    Burmasheva, N., V
    Prosviryakov, E. Yu
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2020, 24 (03): : 528 - 541
  • [47] Numerical Methods and Applications in Biomechanical Modeling 2014
    Soudah, Eduardo
    Ng, Eddie Y. K.
    Sun, Zhonghua
    Maiti, Spandan
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015
  • [48] Integral Equation Methods (MOM) in Numerical Modeling
    Chen, Ji
    Drewniak, Jim
    2008 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, VOLS 1-3, 2008, : 1087 - +
  • [49] Numerical Methods for Electromagnetic Modeling of Graphene: A Review
    Niu, Kaikun
    Li, Ping
    Huang, Zhixiang
    Jiang, Li Jun
    Bagci, Hakan
    IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2020, 5 (05) : 44 - 58
  • [50] Integral Equation Methods (MOM) in Numerical Modeling
    Hubing, Todd H.
    2018 IEEE SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, SIGNAL INTEGRITY AND POWER INTEGRITY (EMC, SI & PI), 2018,