Doubly extended Lie groups - curvature, holonomy and parallel spinors

被引:14
作者
Baum, H
Kath, I
机构
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
[2] Max Planck Inst Math, D-53111 Bonn, Germany
关键词
non-semisimple symmetric spaces; doubly extended Lie groups; biinvariant metrics; holonomy; parallel spinors;
D O I
10.1016/S0926-2245(03)00034-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we study the geometry of doubly extended Lie groups with their natural biinvariant metric. We describe the curvature, the holonomy and the space of parallel spinors. This is completely done for all simply connected groups with biinvariant metric of Lorentzian signature (1, n-1), of signature (2, n-2) and of signature (p, q), where p + q less than or equal to 6. Furthermore, some special series with higher signature are discussed. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:253 / 280
页数:28
相关论文
共 35 条
[1]  
ASTRAKHANTSEV VV, 1973, MAT SBORNIK, V90, P288
[2]   REAL KILLING SPINORS AND HOLONOMY [J].
BAR, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (03) :509-521
[3]   Twistor spinors on Lorentzian symmetric spaces [J].
Baum, H .
JOURNAL OF GEOMETRY AND PHYSICS, 2000, 34 (3-4) :270-286
[4]  
Baum H., 1989, Annals of Global Analysis and Geometry, V7, P205, DOI 10.1007/BF00128299
[5]  
BAUM H, 1991, TWISTERS KILLING SPI, V124
[6]   The dimers stay intact: a quantitative photoelectron study of the adsorption system Si{100}(2x1)-C2H4 [J].
Baumgaertel, P. ;
Lindsay, R. ;
Schaff, O. ;
Giessel, T. ;
Terborg, R. ;
Hoeft, J. T. ;
Polcik, M. ;
Bradshaw, A. M. ;
Carbone, M. ;
Piancastelli, M. N. ;
Zanoni, R. ;
Toomes, R. L. ;
Woodruff, D. P. .
NEW JOURNAL OF PHYSICS, 1999, 1 :20.1-20.15
[7]  
BERARDBERGERY L, 1993, P S PURE MATH, V54, P27
[8]  
BIELIAVSKY P, 1992, ACAD R BELG, V3, P299
[9]  
BLAU M, 2001, HEPTH0110242
[10]   Killing spinors on Lorentzian manifolds [J].
Bohle, C .
JOURNAL OF GEOMETRY AND PHYSICS, 2003, 45 (3-4) :285-308