On the regularity criterion of axisymmetric weak solutions to the 3D Navier-Stokes equations

被引:12
作者
Gala, Sadek [1 ]
机构
[1] Univ Mostaganem, Dept Math, Mostaganem 27000, Algeria
关键词
Navier-Stokes equations; Regularity criterion; A priori estimates; AXIALLY-SYMMETRIC FLOWS; INTERIOR REGULARITY;
D O I
10.1016/j.na.2010.09.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the regularity criterion of axisymmetric weak solutions to the Navier-Stokes equations in R-3. Let u be an axisymmetric weak solution in R-3 x (0, T), w = curl u, and w(theta) be the azimuthal component of w in the cylindrical coordinates. It is proved that u becomes a regular solution if w(theta) is an element of L2/2-s (0, T; (M) over dot(2,3/s)), where (M) over dot(2,3/s) is the critical Morrey-Campanato space. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:775 / 782
页数:8
相关论文
共 20 条
[1]  
[Anonymous], 1999, Electron. J. Differential Equations
[2]   On the regularity of the axisymmetric solutions of the Navier-Stokes equations [J].
Chae, D ;
Lee, J .
MATHEMATISCHE ZEITSCHRIFT, 2002, 239 (04) :645-671
[3]   Regularity criterion of axisymmetric weak solutions to the 3D Navier-Stokes equations [J].
Chen, Qionglei ;
Zhang, Zhifei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (02) :1384-1395
[4]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[5]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[6]  
Kato T., 1992, Bol. Soc. Bras. Mat., Nova Ser., V22, P127, DOI 10.1007/BF01232939
[7]  
Ladyzenskaja O. A., 1968, Zap. Naucn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI), V7, P155
[8]   Multipliers between Sobolev spaces and fractional differentiation [J].
Lemarie-Rieusset, P. G. ;
Gala, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) :1030-1054
[9]  
Lemarie-Rieusset P.-G., 2002, Research Notes in Mathematics, V431
[10]  
Lemarié-Rieusset PG, 2007, REV MAT IBEROAM, V23, P897