Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions

被引:34
作者
Hélein, F
Romon, P
机构
[1] ENS Cachan, CMLA, Inst Univ France, F-94235 Cachan, France
[2] Univ Marne la Vallee, F-77454 Marne La Vallee 2, France
关键词
Lagrangian surfaces; Weierstrass representation; Dirac equation; minimal surfaces; variational problem with constraint;
D O I
10.1007/s000140050144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a Weierstrass-type formula for conformal Lagrangian immersions in Euclidean 4-space, and show that the data satisfies an equation similar to Dirac equation with complex potential. Alternatively this representation has a simple formulation using quaternions. We apply it to the Hamiltonian stationary case and construct all possible tori, thus obtaining a first approach to a moduli space in terms of a simple algebraic-geometric problem on the plane. We also classify Hamiltonian stationary Klein bottles and show they self-intersect.
引用
收藏
页码:668 / 680
页数:13
相关论文
共 20 条
[1]  
BOBENKO AI, 1999, LECT GIVEN SCH DIFFE
[2]  
BOBENKO AI, 1994, ASPECTS MATH E, V23, P83
[3]   Examples of unstable Hamiltonian-minimal Lagrangian tori in C2 [J].
Castro, I ;
Urbano, F .
COMPOSITIO MATHEMATICA, 1998, 111 (01) :1-14
[4]   DEFORMATIONS OF ISOTROPIC SUBMANIFOLDS IN KAHLER-MANIFOLDS [J].
CHEN, BY ;
MORVAN, JM .
JOURNAL OF GEOMETRY AND PHYSICS, 1994, 13 (01) :79-104
[5]   CALIBRATED GEOMETRIES [J].
HARVEY, R ;
LAWSON, HB .
ACTA MATHEMATICA, 1982, 148 :47-157
[6]  
HELEIN F, 1999, UNPUB COMM ANAL GEO
[7]  
KENMOTSU K, 1979, MATH ANN, V245, P89, DOI 10.1007/BF01428799
[8]  
Konopelchenko BG, 1996, STUD APPL MATH, V96, P9
[9]   Constant mean curvature surfaces via an integrable dynamical system [J].
Konopelchenko, BG ;
Taimanov, IA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (06) :1261-1265
[10]  
KONOPELCHENKO BG, GEN WEIERSTRASS FORM