Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives

被引:49
|
作者
Hao, Leiduan [1 ]
Xia, Qineng [2 ]
Zhang, Qiang [3 ]
Masa, Justus [4 ]
Sun, Zhenyu [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Chem Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Jiaxing Univ, Coll Biol Chem Sci & Engn, Jiaxing 314001, Zhejiang, Peoples R China
[3] Washington State Univ, Dept Chem, Pullman, WA 99164 USA
[4] Kyambogo Univ, Dept Chem, POB 1, Kampala, Uganda
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
CO2; conversion; Metal-organic frameworks; Catalytic active sites; Synergy; Catalytic performance; CARBON-DIOXIDE FIXATION; HETEROGENEOUS CATALYST; CYCLIC CARBONATES; CHEMICAL FIXATION; HIGH-SELECTIVITY; RETICULAR CHEMISTRY; EFFICIENT CATALYSTS; HIERARCHICAL PORES; TERMINAL ALKYNES; ROOM-TEMPERATURE;
D O I
10.1016/S1872-2067(21)63841-X
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Climate change caused by the increasing emission of CO2 to the atmosphere has become a global concern. To ameliorate this issue, converting CO2 into valuable chemicals is highly desirable, enabling a sustainable low-carbon future. To this end, developing efficient catalytic systems for CO2 conversion has sparked intense interests from both academia and industry. Taking advantage of their highly porous structures and unique properties, metal-organic frameworks (MOFs) have shown great potential as heterogeneous catalysts for CO2 conversion. Various transformations involving CO2 have been accomplished over MOFs-based materials. Here we provide a comprehensive and up-to-date review on recent advances of heterogeneous CO2 thermocatalysis using MOFs, highlighting relationships between structures and properties. Special attention is given to the design strategies for improving the catalytic performance of MOFs. Avenues available to enrich the catalytic active sites in MOF structures are stressed and their respective impacts on CO2 conversion efficiency are presented. The synergistic effects between each active site within the structure of MOFs and derivatives are discussed. In the end, future perspectives and challenges in CO2 conversion by heterogeneous catalysis with MOFs are described. (C) 2021, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1903 / 1920
页数:18
相关论文
共 50 条
  • [1] Strategies for Enhancing the Catalytic Performance of Metal-Organic Frameworks in the Fixation of CO2 into Cyclic Carbonates
    Taherimehr, Masoumeh
    Van de Voorde, Ben
    Wee, Lik H.
    Martens, Johan A.
    De Vos, Dirk E.
    Pescarmona, Paolo P.
    CHEMSUSCHEM, 2017, 10 (06) : 1283 - 1291
  • [2] Stable metal-organic frameworks with high catalytic performance in the cycloaddition of CO2 with aziridines
    Kang, Xiao-Min
    Shi, Ying
    Cao, Chun-Shuai
    Zhao, Bin
    SCIENCE CHINA-CHEMISTRY, 2019, 62 (05) : 622 - 628
  • [3] Solvent Impedes CO2 Cycloaddition on Metal-Organic Frameworks
    Shao, Dan
    Shi, Jinbiao
    Zhang, Jianling
    Tan, Xiuniang
    Luo, Tian
    Cheng, Xiuyan
    Zhang, Bingxing
    Han, Buxing
    CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (04) : 386 - 389
  • [4] Strategies for improving the photocatalytic performance of metal-organic frameworks for CO 2 reduction: A review
    Guo, Ke
    Hussain, Ijaz
    Jie, Guang'an
    Fu, Yanghe
    Zhang, Fumin
    Zhu, Weidong
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2023, 125 : 290 - 308
  • [5] [Zn4O] Cluster-Based Metal-Organic Frameworks as Catalysts for Conversion of CO2
    Qiao, Wanzhen
    Song, Tianqun
    Zhao, Bin
    CHINESE JOURNAL OF CHEMISTRY, 2019, 37 (05) : 474 - 478
  • [6] Synthesis chemistry of metal-organic frameworks for CO2 capture and conversion for sustainable energy future
    Olajire, Abass A.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 92 : 570 - 607
  • [7] Stable metal-organic frameworks with high catalytic performance in the cycloaddition of CO2 with aziridines
    Xiao-Min Kang
    Ying Shi
    Chun-Shuai Cao
    Bin Zhao
    Science China(Chemistry), 2019, (05) : 622 - 628
  • [8] Catalytic Space Engineering of Porphyrin Metal-Organic Frameworks for Combined CO2 Capture and Conversion at a Low Concentration
    Liu, Jiewei
    Fan, Yan-Zhong
    Li, Xin
    Xu, Yao-Wei
    Zhang, Li
    Su, Cheng-Yong
    CHEMSUSCHEM, 2018, 11 (14) : 2340 - 2347
  • [9] New Metal-Organic Frameworks for Chemical Fixation of CO2
    Nguyen, Phuong T. K.
    Nguyen, Huong T. D.
    Nguyen, Hung N.
    Trickett, Christopher A.
    Ton, Quang T.
    Gutierrez-Puebla, Enrique
    Angeles Monge, M.
    Cordova, Kyle E.
    Gandara, Felipe
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (01) : 733 - 744
  • [10] Metal-Organic Frameworks (MOFs) and their Applications in CO2 Adsorption and Conversion
    Zulkifli, Zuraini, I
    Lim, Kean L.
    Teh, Lee P.
    CHEMISTRYSELECT, 2022, 7 (22):