Eigenvalue estimates of Reilly type in product manifolds and eigenvalue comparison for strip domains

被引:9
作者
Xiong, Changwei [1 ]
机构
[1] Australian Natl Univ, Math Sci Inst, Canberra, ACT 2601, Australia
关键词
Eigenvalue estimate; Reilly type; Product manifold; Eigenvalue comparison; Strip domain; 1ST EIGENVALUE; COMPACT SUBMANIFOLDS; STEKLOV EIGENVALUE; UPPER-BOUNDS; LAPLACIAN; INEQUALITY; SPACE; GAP;
D O I
10.1016/j.difgeo.2018.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the first part we derive sharp upper bounds of Reilly type for three kinds of eigenvalues in product manifolds R-k x Mn+ l- k for any complete Riemannian manifold M. The eigenvalues include the first Laplacian eigenvalue on mean convex closed hypersurfaces, the first Steklov eigenvalue on domains with mean convex boundary, and the first Hodge Laplacian eigenvalue on closed hypersurfaces with certain convexity condition. In the second part, we prove a comparison result between the first Steklov eigenvalue of a strip domain in space forms and that of the corresponding warped product manifold. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 17 条
[11]  
Kuznetsov N., 2014, NOT AM MATH SOC, V61, P9
[12]   Some sharp Hodge Laplacian and Steklov eigenvalue estimates for differential forms [J].
Kwong, Kwok-Kun .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (02)
[13]   A Reilly Formula and Eigenvalue Estimates for Differential Forms [J].
Raulot, S. ;
Savo, A. .
JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (03) :620-640
[14]   1ST EIGENVALUE OF LAPLACIAN FOR COMPACT SUBMANIFOLDS OF EUCLIDEAN SPACE [J].
REILLY, RC .
COMMENTARII MATHEMATICI HELVETICI, 1977, 52 (04) :525-533
[15]   On the first Hodge eigenvalue of isometric immersions [J].
Savo, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (02) :587-594
[16]  
WHEELER L, 1976, SIAM J APPL MATH, V31, P385, DOI 10.1137/0131032
[17]  
ZHONG JQ, 1984, SCI SIN A-MATH P A T, V27, P1265