Eigenvalue estimates of Reilly type in product manifolds and eigenvalue comparison for strip domains

被引:9
作者
Xiong, Changwei [1 ]
机构
[1] Australian Natl Univ, Math Sci Inst, Canberra, ACT 2601, Australia
关键词
Eigenvalue estimate; Reilly type; Product manifold; Eigenvalue comparison; Strip domain; 1ST EIGENVALUE; COMPACT SUBMANIFOLDS; STEKLOV EIGENVALUE; UPPER-BOUNDS; LAPLACIAN; INEQUALITY; SPACE; GAP;
D O I
10.1016/j.difgeo.2018.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the first part we derive sharp upper bounds of Reilly type for three kinds of eigenvalues in product manifolds R-k x Mn+ l- k for any complete Riemannian manifold M. The eigenvalues include the first Laplacian eigenvalue on mean convex closed hypersurfaces, the first Steklov eigenvalue on domains with mean convex boundary, and the first Hodge Laplacian eigenvalue on closed hypersurfaces with certain convexity condition. In the second part, we prove a comparison result between the first Steklov eigenvalue of a strip domain in space forms and that of the corresponding warped product manifold. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 17 条
[1]   PROOF OF THE FUNDAMENTAL GAP CONJECTURE [J].
Andrews, Ben ;
Clutterbuck, Julie .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :899-916
[2]  
Asada S., 1980, Hokkaido Math. J., V9, P112, DOI 10.14492/hokmj/1381758222
[3]   Second eigenvalue of Schrodinger operators and mean curvature [J].
El Soufi, A ;
Ilias, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 208 (03) :761-770
[4]  
ELSOUFI A, 1992, COMMENT MATH HELV, V67, P167
[5]   Spectral geometry of the Steklov problem (survey article) [J].
Girouard, Alexandre ;
Polterovich, Iosif .
JOURNAL OF SPECTRAL THEORY, 2017, 7 (02) :321-359
[6]   Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds [J].
Grosjean, JF .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 206 (01) :93-112
[7]  
Grosjean JF., 2004, HOKKAIDO MATH J, V33, P319, DOI DOI 10.14492/HOKMJ/1285766168
[8]   EXTRINSIC UPPER-BOUNDS FOR GAMMA-1 [J].
HEINTZE, E .
MATHEMATISCHE ANNALEN, 1988, 280 (03) :389-402
[9]   A Reilly inequality for the first Steklov eigenvalue [J].
Ilias, Said ;
Makhoul, Ola .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (05) :699-708
[10]  
KROGER P, 1992, J DIFFER GEOM, V36, P315