Spectral Heterogeneity Predicts Local-Scale Gamma and Beta Diversity of Mesic Grasslands

被引:23
作者
Polley, H. Wayne [1 ]
Yang, Chenghai [2 ]
Wilsey, Brian J. [3 ]
Fay, Philip A. [1 ]
机构
[1] USDA ARS, Grassland Soil & Water Res Lab, Temple, TX 76502 USA
[2] USDA ARS, Southern Plains Agr Res Ctr, College Stn, TX 77845 USA
[3] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA
关键词
airborne remote sensing; hyperspectral spectroradiometer; partial least squares regression; Shannon diversity; spatial grain; spatial heterogeneity in vegetation optical properties; PLANT DIVERSITY; BIODIVERSITY; PRODUCTIVITY; REGRESSION; RESOLUTION; ALPHA;
D O I
10.3390/rs11040458
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Plant species diversity is an important metric of ecosystem functioning, but field assessments of diversity are constrained in number and spatial extent by labor and other expenses. We tested the utility of using spatial heterogeneity in the remotely-sensed reflectance spectrum of grassland canopies to model both spatial turnover in species composition and abundances ( diversity) and species diversity at aggregate spatial scales ( diversity). Shannon indices of and diversity were calculated from field measurements of the number and relative abundances of plant species at each of two spatial grains (0.45 m(2) and 35.2 m(2)) in mesic grasslands in central Texas, USA. Spectral signatures of reflected radiation at each grain were measured from ground-level or an unmanned aerial vehicle (UAV). Partial least squares regression (PLSR) models explained 59-85% of variance in diversity and 68-79% of variance in diversity using spatial heterogeneity in canopy optical properties. Variation in both and diversity were associated most strongly with heterogeneity in reflectance in blue (350-370 nm), red (660-770 nm), and near infrared (810-1050 nm) wavebands. Modeled diversity was more sensitive by a factor of three to a given level of spectral heterogeneity when derived from data collected at the small than larger spatial grain. As estimated from calibrated PLSR models, diversity was greater, but diversity was smaller for restored grassland on a lowland clay than upland silty clay soil. Both and diversity of grassland can be modeled by using spatial heterogeneity in vegetation optical properties provided that the grain of reflectance measurements is conserved.
引用
收藏
页数:15
相关论文
共 32 条
[1]   Contrasting beta diversity among regions: how do classical and multivariate approaches compare? [J].
Bennett, Joseph R. ;
Gilbert, Benjamin .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2016, 25 (03) :368-377
[2]   Proposing a resolution to debates on diversity partitioning [J].
Chao, Anne ;
Chiu, Chun-Huo ;
Hsieh, T. C. .
ECOLOGY, 2012, 93 (09) :2037-2051
[3]   Multiple facets of biodiversity drive the diversity-stability relationship [J].
Craven, Dylan ;
Eisenhauer, Nico ;
Pearse, William D. ;
Hautier, Yann ;
Isbell, Forest ;
Roscher, Christiane ;
Bahn, Michael ;
Beierkuhnlein, Carl ;
Boenisch, Gerhard ;
Buchmann, Nina ;
Byun, Chaeho ;
Catford, Jane A. ;
Cerabolini, Bruno E. L. ;
Cornelissen, J. Hans C. ;
Craine, Joseph M. ;
De Luca, Enrica ;
Ebeling, Anne ;
Griffin, John N. ;
Hector, Andy ;
Hines, Jes ;
Jentsch, Anke ;
Kattge, Jens ;
Kreyling, Juergen ;
Lanta, Vojtech ;
Lemoine, Nathan ;
Meyer, Sebastian T. ;
Minden, Vanessa ;
Onipchenko, Vladimir ;
Polley, H. Wayne ;
Reich, Peter B. ;
van Ruijven, Jasper ;
Schamp, Brandon ;
Smith, Melinda D. ;
Soudzilovskaia, Nadejda A. ;
Tilman, David ;
Weigelt, Alexandra ;
Wilsey, Brian ;
Manning, Peter .
NATURE ECOLOGY & EVOLUTION, 2018, 2 (10) :1579-1587
[4]   Assessment of fine-scale plant species beta diversity using WorldView-2 satellite spectral dissimilarity [J].
Dalmayne, Jonas ;
Mockel, Thomas ;
Prentice, Honor C. ;
Schmid, Barbara C. ;
Hall, Karin .
ECOLOGICAL INFORMATICS, 2013, 18 :1-9
[5]   Predicting ecosystem stability from community composition and biodiversity [J].
de Mazancourt, Claire ;
Isbell, Forest ;
Larocque, Allen ;
Berendse, Frank ;
De Luca, Enrica ;
Grace, James B. ;
Haegeman, Bart ;
Polley, H. Wayne ;
Roscher, Christiane ;
Schmid, Bernhard ;
Tilman, David ;
van Ruijven, Jasper ;
Weigelt, Alexandra ;
Wilsey, Brian J. ;
Loreau, Michel .
ECOLOGY LETTERS, 2013, 16 (05) :617-625
[6]   Fine-scale assessment of hay meadow productivity and plant diversity in the European Alps using field spectrometric data [J].
Fava, F. ;
Parolo, G. ;
Colombo, R. ;
Gusmeroli, F. ;
Della Marianna, G. ;
Monteiro, A. T. ;
Bocchi, S. .
AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2010, 137 (1-2) :151-157
[7]   Primary Productivity and Water Balance of Grassland Vegetation on Three Soils in a Continuous CO2 Gradient: Initial Results from the Lysimeter CO2 Gradient Experiment [J].
Fay, Philip A. ;
Kelley, Alexia M. ;
Procter, Andrew C. ;
Hui, Dafeng ;
Jin, Virginia L. ;
Jackson, Robert B. ;
Johnson, Hyrum B. ;
Polley, H. Wayne .
ECOSYSTEMS, 2009, 12 (05) :699-714
[8]   Brightness-normalized Partial Least Squares Regression for hyperspectral data [J].
Feilhauer, Hannes ;
Asner, Gregory P. ;
Martin, Roberta E. ;
Schmidtlein, Sebastian .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2010, 111 (12-13) :1947-1957
[9]   Detecting prairie biodiversity with airborne remote sensing [J].
Gholizadeh, Hamed ;
Gamon, John A. ;
Townsend, Philip A. ;
Zygielbaum, Arthur I. ;
Helzer, Christopher J. ;
Hmimina, Gabriel Y. ;
Yu, Rong ;
Moore, Ryan M. ;
Schweiger, Anna K. ;
Cavender-Bares, Jeannine .
REMOTE SENSING OF ENVIRONMENT, 2019, 221 :38-49
[10]   Species Richness and the Temporal Stability of Biomass Production: A New Analysis of Recent Biodiversity Experiments [J].
Gross, Kevin ;
Cardinale, Bradley J. ;
Fox, Jeremy W. ;
Gonzalez, Andrew ;
Loreau, Michel ;
Polley, H. Wayne ;
Reich, Peter B. ;
van Ruijven, Jasper .
AMERICAN NATURALIST, 2014, 183 (01) :1-12