Parameter identification from hybrid model using PSO and penalty functions

被引:1
作者
Cortez, Ricardo [1 ]
Lozano, Yair [2 ]
Garrido, Ruben [3 ]
机构
[1] Inst Politecn Nacl, UPIITA, Mexico City, DF, Mexico
[2] Inst Politecn Nacl, ESIME, Cdmx, Mexico
[3] CINVESTAV, Dept Control Automat, Mexico City, DF, Mexico
来源
2021 18TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2021) | 2021年
关键词
Parameter identification; Hysteresis; Particle Swarm Optimization; Hybrid model; Smart actuator; Shape Memory Alloy; ALGORITHM; SYSTEMS;
D O I
10.1109/CCE53527.2021.9633108
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This work studies the parameter identification of a hybrid model with Particle Swarm Optimization. A hybrid model is based on selection functions that allow the switching between simple mathematical expressions in order to describe a complex behavior. In this work two performance functions are proposed to perform the identification: The former considers a switching between functions on their structure. The latter implements function penalty functions in order to avoid the evaluation of the selection functions. These functions test for the parameter identification of a Shape Memory Alloy model under a numerical simulation. The quality of the computed estimates is tested using statistical tools to assure repeatability and to verify the influence of the performance functions.
引用
收藏
页数:6
相关论文
共 22 条
[1]   Parameter estimation of the fractional-order Hammerstein-Wiener model using simplified refined instrumental variable fractional-order continuous time [J].
Allafi, Walid ;
Zajic, Ivan ;
Uddin, Kotub ;
Burnham, Keith J. .
IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (15) :2591-2598
[2]   A hybrid dynamic model of shape memory alloy spring actuators [J].
Cortez-Vega, R. ;
Chairez, I. ;
Luviano-Juarez, A. ;
Feliu-Batlle, V. .
MEASUREMENT, 2018, 114 :340-353
[3]   A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms [J].
Derrac, Joaquin ;
Garcia, Salvador ;
Molina, Daniel ;
Herrera, Francisco .
SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (01) :3-18
[4]   Particle Swarm Optimisation: A Historical Review Up to the Current Developments [J].
Freitas, Diogo ;
Lopes, Luiz Guerreiro ;
Morgado-Dias, Fernando .
ENTROPY, 2020, 22 (03)
[5]   DC servomechanism parameter identification: A closed loop input error approach [J].
Garrido, Ruben ;
Miranda, Roger .
ISA TRANSACTIONS, 2012, 51 (01) :42-49
[6]  
Hafsi S, 2012, IEEE MEDITERR ELECT, P5, DOI 10.1109/MELCON.2012.6196367
[7]   Robust Nonlinear Adaptive Control of a "Boost" Converter via Algebraic Parameter Identification [J].
Linares-Flores, Jesus ;
Hernandez Mendez, Arturo ;
Garcia-Rodriguez, Carlos ;
Sira-Ramirez, Hebertt .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (08) :4105-4114
[8]  
Ljung L, 1998, APPL NUM HARM ANAL, P163
[9]   The irace package: Iterated racing for automatic algorithm configuration [J].
Lopez-Ibanez, Manuel ;
Dubois-Lacoste, Jeremie ;
Caceres, Leslie Perez ;
Birattari, Mauro ;
Stutzle, Thomas .
OPERATIONS RESEARCH PERSPECTIVES, 2016, 3 :43-58
[10]   Neural network-based Modeling and parameter identification of switched reluctance motors [J].
Lu, WZ ;
Keyhani, A ;
Fardoun, A .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2003, 18 (02) :284-290