Examination of the influence of heat treatment on the corrosion resistance of martensitic stainless steels

被引:30
作者
Mueller, T. [1 ]
Heyn, A. [1 ,2 ]
Babutzka, M. [1 ]
Rosemann, P. [2 ]
机构
[1] BAM, Fed Inst Mat Res & Testing, D-12205 Berlin, Germany
[2] Otto Von Guericke Univ, IWF Inst Mat & Joining Technol, D-39016 Magdeburg, Germany
来源
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION | 2015年 / 66卷 / 07期
关键词
PITTING CORROSION;
D O I
10.1002/maco.201407861
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Martensitic stainless steels are commonly used in cutlery fabrication requiring high hardness and sufficient corrosion resistance. The heat treatment process affects the mechanical and electrochemical behavior of martensitic stainless steels due to the precipitation of chromium carbides. Depending on the heat treatment the corrosion resistance of these steels can vary strongly, and improper heat treatment parameters can lead to a weak pitting corrosion resistance. The aim of this work is to identify heat treatment parameters influencing the corrosion resistance of martensitic stainless steels by using three different electrochemical testing methods. To this purpose, five different heat treatments were applied to the alloys 1.4116 and 1.4034. In addition to the determination of the critical pitting potentials and the modified double-loop electrochemical potentiodynamic reactivation tests (DL-EPR) a new KorroPad indicator test was used assessing the pitting corrosion behavior. The results showed that all methods used were in good agreement for verifying the influence of the various heat treatment parameters on the corrosion behavior and to identify the effect of heat treatment conditions on the pitting corrosion resistance.
引用
收藏
页码:656 / 662
页数:7
相关论文
共 20 条
[1]  
[Anonymous], ANN BOOK STAND
[2]   The factor time at the formation and development of the passive layer in the atmosphere [J].
Bierwirth, M. ;
Goellner, J. ;
Heyn, A. ;
Winkelmans, M. .
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2007, 58 (12) :946-952
[3]   The influence of grinding treatment of stainless steels on the corrosion behaviour [J].
Burkert, A ;
Schilling, K ;
Heyn, A .
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2004, 55 (10) :787-793
[4]   Novel strategies for assessing the pitting corrosion resistance of stainless steel surfaces [J].
Burkert, A. ;
Klapper, H. S. ;
Lehmann, J. .
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2013, 64 (08) :675-682
[5]   Influence of the heat treatment on the corrosion resistance of the martensitic stainless steel type AISI 420 [J].
Candelária, AF ;
Pinedo, CE .
JOURNAL OF MATERIALS SCIENCE LETTERS, 2003, 22 (16) :1151-1153
[6]  
Cíhal V, 2004, KEY ENG MATER, V261-263, P855
[7]  
Cihal V, 1984, INTERGRANULAR CORROS, P368
[8]   Effects of carbide-forming elements on the response to thermal treatment of the X45Cr13 martensitic stainless steel [J].
De Andrés, CG ;
Alvarez, LF ;
López, V ;
Jiménez, JA .
JOURNAL OF MATERIALS SCIENCE, 1998, 33 (16) :4095-4100
[9]   Control of M23C6 carbides in 0.45C-13Cr martensitic stainless steel by means of three representative heat treatment parameters [J].
de Andres, CG ;
Caruana, G ;
Alvarez, LF .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1998, 241 (1-2) :211-215
[10]  
DEANDRES CG, 1993, J MATER SCI, V28, P1264