Influence of crystallinity on the electrical conductivity of individual carbon nanotubes

被引:15
作者
Flygare, Mattias [1 ]
Svensson, Krister [1 ]
机构
[1] Karlstad Univ, Dept Engn & Phys, SE-65188 Karlstad, Sweden
来源
CARBON TRENDS | 2021年 / 5卷
关键词
Carbon nanotubes; Electrical conductivity; Crystallinity; Quantum confinement; Transmission electron microscopy;
D O I
10.1016/j.cartre.2021.100125
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The material properties of graphene and carbon nanotubes are highly sensitive to defects. Future exploitation of these materials will thereby rely on both a detailed understanding and classification schemes for material quality. Here we have used electron diffraction to measure the mean effective crystallite size of individual multiwalled carbon nanotubes, while also probing their electrical resistance. At room temperature we find a drastic shift in linear resistance of two orders of magnitude at a critical grain size of about 11 nm, which we interpret as an effect from quantum confinement and edge effects in the individual crystallites. For the regions above and below the critical grain size value we suggest a scaling model for the electrical conductivity within a single layer of a multiwalled carbon nanotube which connects its electrical conductivity with the effective crystallite size and tube diameter. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页数:7
相关论文
共 31 条
[1]  
An L., International Journal of Theoretical and Applied Nanotechnology, DOI [DOI 10.11159/IJTAN.2013.004, 10.11159/ijtan.2013.004.]
[2]   Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements [J].
Bachtold, A ;
Henny, M ;
Terrier, C ;
Strunk, C ;
Schonenberger, C ;
Salvetat, JP ;
Bonard, JM ;
Forro, L .
APPLIED PHYSICS LETTERS, 1998, 73 (02) :274-276
[3]  
Biercuk MJ, 2008, TOP APPL PHYS, V111, P455, DOI 10.1007/978-3-540-72865-8_15
[4]   Determination of the intershell conductance in multiwalled carbon nanotubes -: art. no. 176806 [J].
Bourlon, B ;
Miko, C ;
Forró, L ;
Glattli, DC ;
Bachtold, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (17) :176806-1
[5]   Establishing Ohmic contacts for in situ current-voltage characteristic measurements on a carbon nanotube inside the scanning electron microscope [J].
Chen, Q ;
Wang, S ;
Peng, LM .
NANOTECHNOLOGY, 2006, 17 (04) :1087-1098
[6]   Charge Transport in Polycrystalline Graphene: Challenges and Opportunities [J].
Cummings, Aron W. ;
Dinh Loc Duong ;
Van Luan Nguyen ;
Dinh Van Tuan ;
Kotakoski, Jani ;
Barrios Vargas, Jose Eduardo ;
Lee, Young Hee ;
Roche, Stephan .
ADVANCED MATERIALS, 2014, 26 (30) :5079-5094
[7]   Electrical conductivity of individual carbon nanotubes [J].
Ebbesen, TW ;
Lezec, HJ ;
Hiura, H ;
Bennett, JW ;
Ghaemi, HF ;
Thio, T .
NATURE, 1996, 382 (6586) :54-56
[8]  
Flygare Mattias, 2021, Mendeley Data, V1, DOI 10.17632/WWWB6TXC4H.1
[9]   Quantifying crystallinity in carbon nanotubes and its influence on mechanical behaviour [J].
Flygare, Mattias ;
Svensson, Krister .
MATERIALS TODAY COMMUNICATIONS, 2019, 18 :39-45
[10]   Carbon nanotubes - becoming clean [J].
Grobert, Nicole .
MATERIALS TODAY, 2007, 10 (1-2) :28-35