A practical route towards fabricating GaN nanowire arrays

被引:22
|
作者
Liu, Jianqi [1 ,2 ,3 ]
Huang, Jun [1 ,2 ,3 ]
Gong, Xiaojing [1 ]
Wang, Jianfeng [1 ,4 ]
Xu, Ke [1 ,4 ]
Qiu, Yongxin [1 ]
Cai, Demin [4 ]
Zhou, Taofei [1 ]
Ren, Guoqiang [1 ,4 ]
Yang, Hui [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China
[2] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
[3] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
[4] Suzhou Nanowin Sci & Technol Co LTD, Suzhou 215125, Peoples R China
来源
CRYSTENGCOMM | 2011年 / 13卷 / 19期
基金
中国国家自然科学基金;
关键词
LIGHT-EMITTING-DIODES; EPITAXIAL LATERAL OVERGROWTH; CHEMICAL-VAPOR-DEPOSITION; WELL NANOROD ARRAYS; ULTRAVIOLET-LIGHT; GROWTH; NANOGENERATORS; DISLOCATIONS; BRIGHTNESS; LAYERS;
D O I
10.1039/c1ce05292f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
GaN nanowire (NW) arrays have been fabricated by the electrodeless photoelectrochemical (PEC) etching method for the first time. Under appropriate conditions, the etching process is just a dislocation-hunted process, in which the etching solution "digs down'' along the threading dislocations, resulting in the formation of GaN NWs by preferentially etching away the defective parts of GaN with dislocations and retaining the flawless parts. The NWs have a density of 1 similar to 2 x 10(7) cm(-2), diameters ranging from 150 nm to 500 nm, and corresponding lengths ranging from 10 mu m to 20 mu m. Transmission electron microscopy (TEM) indicates that these GaN NWs possess few dislocations. High resolution X-ray diffraction (HRXRD) and micro-Raman measurements show that these GaN NWs are stress-free. Room temperature cathodoluminescence (CL) measurements show a single near-band-edge emission at 367 nm with a full width at half maximum (FWHM) of 8 nm from the NWs, indicating a high optical quality. Additionally, negative piezoelectric current pluses are generated from the GaN NWs when the conductive atomic force microscope is scanned cross the arrays in contact mode. Such GaN NW arrays are promising building blocks for exploring nanodevices with excellent performance.
引用
收藏
页码:5929 / 5935
页数:7
相关论文
共 50 条
  • [1] A simple approach for fabricating polypyrrole nanowire arrays
    Cheng, F. L.
    Zhang, M.
    Zhang, M. I.
    7TH INTERNATIONAL SYMPOSIUM ON MEASUREMENT TECHNOLOGY AND INTELLIGENT INSTRUMENTS, 2005, 13 : 454 - 457
  • [2] The pH rule for fabricating composite CoCu nanowire arrays
    Liu, Xiaoxu
    Zhao, Jianling
    Li, Yangxian
    Xu, Shifeng
    Zhu, Zhiyong
    Chen, Jinglan
    Wu, Guangheng
    CHEMISTRY LETTERS, 2007, 36 (01) : 166 - 167
  • [3] Fabrication and photoluminescence of ordered GaN nanowire arrays
    Zhang, J
    Zhang, LD
    Wang, XF
    Liang, CH
    Peng, XS
    Wang, YW
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (13): : 5714 - 5717
  • [4] Fabrication of GaN nanowire arrays by confined epitaxy
    Wang, Xin
    Sun, Xinyu
    Fairchild, Michael
    Hersee, Stephen D.
    APPLIED PHYSICS LETTERS, 2006, 89 (23)
  • [5] The synthesis of highly oriented GaN nanowire arrays
    J.C. Wang
    C.Z. Zhan
    F.G. Li
    Applied Physics A, 2003, 76 : 609 - 611
  • [6] The synthesis of highly oriented GaN nanowire arrays
    Wang, JC
    Zhan, CZ
    Li, FG
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2003, 76 (04): : 609 - 611
  • [7] Optical design of GaN nanowire arrays for photocatalytic applications
    Winnerl, Julia
    Hudeczek, Richard
    Stutzmann, Martin
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (20)
  • [8] Optical design of GaN nanowire arrays for photocatalytic applications
    1600, American Institute of Physics Inc. (123):
  • [9] GaN Nanowire Arrays for High-Output Nanogenerators
    Huang, Chi-Te
    Song, Jinhui
    Lee, Wei-Fan
    Ding, Yong
    Gao, Zhiyuan
    Hao, Yue
    Chen, Lih-Juann
    Wang, Zhong Lin
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (13) : 4766 - 4771
  • [10] A New Route for Fabricating On-Chip Chalcogenide Microcavity Resonator Arrays
    Aktas, Ozan
    Ozgur, Erol
    Tobail, Osama
    Kanik, Mehmet
    Huseyinoglu, Ersin
    Bayindir, Mehmet
    ADVANCED OPTICAL MATERIALS, 2014, 2 (07): : 618 - 625