Positive Solutions for a Class of Quasilinear Schrodinger Equations with Two Parameters

被引:7
作者
Chen, Jianhua [1 ]
Wu, Qingfang [2 ]
Huang, Xianjiu [1 ]
Zhu, Chuanxi [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
[2] Cent South Univ, Sch Traff & Transportat Engn, Changsha 410075, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasilinear Schrodinger equation; Positive solutions; Parameters; SOLITON-SOLUTIONS; WAVE SOLUTIONS; EXISTENCE;
D O I
10.1007/s40840-019-00803-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following quasilinear Schrodinger equation. By using a change of variable, we obtain the existence of positive solutions for this problem with subcritical nonlinearities by using the mountain pass theorem and Moser iterative method. Our results extend and supplement some other related literatures.
引用
收藏
页码:2321 / 2341
页数:21
相关论文
共 50 条
[41]   Positive soliton solutions for generalized quasilinear Schrodinger equations with critical growth [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Yan, Shusen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (01) :115-147
[42]   POSITIVE SOLUTIONS FOR CRITICAL QUASILINEAR SCHRODINGER EQUATIONS WITH POTENTIALS VANISHING AT INFINITY [J].
LI, Guofa ;
Huang, Yisheng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (07) :3971-3989
[43]   POSITIVE SOLUTIONS FOR ASYMPTOTICALLY 3-LINEAR QUASILINEAR SCHRODINGER EQUATIONS [J].
Li, Guofa ;
Cheng, Bitao ;
Huang, Yisheng .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
[44]   Existence of multiple nontrivial solutions for a class of quasilinear Schrodinger equations on RN [J].
Che, Guofeng ;
Chen, Haibo .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2018, 25 (01) :39-53
[45]   EXISTENCE OF GROUND STATE SOLUTIONS FOR A CLASS OF QUASILINEAR SCHRODINGER EQUATIONS WITH GENERAL CRITICAL NONLINEARITY [J].
Chen, Jianhua ;
Tang, Xianhua ;
Cheng, Bitao .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (01) :493-517
[46]   Multiple solutions to a class of generalized quasilinear Schrodinger equations with a Kirchhoff-type perturbation [J].
Li, Fuyi ;
Zhu, Xiaoli ;
Liang, Zhanping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (01) :11-38
[47]   Soliton solutions for quasilinear Schrodinger equations [J].
Yang, Jun ;
Wang, Youjun ;
Abdelgadir, Ahamed Adam .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (07)
[48]   EXISTENCE OF SOLUTIONS TO QUASILINEAR SCHRODINGER EQUATIONS WITH INDEFINITE POTENTIAL [J].
Shen, Zupei ;
Han, Zhiqing .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
[49]   Uniqueness of the ground state solutions of quasilinear Schrodinger equations [J].
Adachi, Shinji ;
Watanabe, Tatsuya .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) :819-833
[50]   Existence of solutions to quasilinear Schrodinger equations with exponential nonlinearity [J].
Severo, Uberlandio B. ;
Ribeiro, Bruno H. C. ;
Germano, Diogo de S. .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (14) :1-14