Positive Solutions for a Class of Quasilinear Schrodinger Equations with Two Parameters

被引:7
作者
Chen, Jianhua [1 ]
Wu, Qingfang [2 ]
Huang, Xianjiu [1 ]
Zhu, Chuanxi [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
[2] Cent South Univ, Sch Traff & Transportat Engn, Changsha 410075, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasilinear Schrodinger equation; Positive solutions; Parameters; SOLITON-SOLUTIONS; WAVE SOLUTIONS; EXISTENCE;
D O I
10.1007/s40840-019-00803-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following quasilinear Schrodinger equation. By using a change of variable, we obtain the existence of positive solutions for this problem with subcritical nonlinearities by using the mountain pass theorem and Moser iterative method. Our results extend and supplement some other related literatures.
引用
收藏
页码:2321 / 2341
页数:21
相关论文
共 50 条
[31]   POSITIVE SOLUTION FOR QUASILINEAR SCHRODINGER EQUATIONS WITH A PARAMETER [J].
Li, Guangbing .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (05) :1803-1816
[32]   On a class of quasilinear Schrodinger equations with superlinear or asymptotically linear terms [J].
Severo, Uberlandio B. ;
Gloss, Elisandra ;
da Silva, Edcarlos D. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (06) :3550-3580
[33]   Multiple solutions for quasilinear Schrodinger equations with a parameter [J].
Wu, Xian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) :2619-2632
[34]   Multiple solutions for generalized quasilinear Schrodinger equations [J].
Li, Quanqing ;
Wu, Xian .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (05) :1359-1366
[35]   Soliton solutions for a class of quasilinear Schrodinger equations with a parameter [J].
Alves, Claudianor O. ;
Wang, Youjun ;
Shen, Yaotian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (01) :318-343
[36]   Symmetric and nonsymmetric solutions for a class of quasilinear Schrodinger equations [J].
Severo, Uberlandio B. .
ADVANCED NONLINEAR STUDIES, 2008, 8 (02) :375-389
[37]   Existence of solutions for a class of generalized quasilinear Schrodinger equations [J].
Wang, Youjun ;
Mei, Yanfang .
APPLIED MATHEMATICS LETTERS, 2020, 102
[38]   On concentration of solutions for quasilinear Schrodinger equations with critical growth in the plane [J].
Severo, Uberlandio B. ;
Germano, Diogo de S. .
APPLICABLE ANALYSIS, 2023, 102 (15) :4058-4091
[39]   Infinitely many solutions for a class of quasilinear Schrodinger equations involving sign-changing weight functions [J].
Jalilian, Y. .
APPLICABLE ANALYSIS, 2019, 98 (07) :1347-1366
[40]   Positive solutions for generalized quasilinear Schrodinger equations with asymptotically linear nonlinearities [J].
Li, Guofa ;
Huang, Yisheng .
APPLICABLE ANALYSIS, 2021, 100 (05) :1051-1066