Hyperspectral Image Classification by Fusing Collaborative and Sparse Representations

被引:62
作者
Li, Wei [1 ]
Du, Qian [2 ]
Zhang, Fan [1 ]
Hu, Wei [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
[2] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
基金
中国国家自然科学基金;
关键词
Classifier fusion; collaborative representation (CR); hyperspectral classification; sparse representation (SR); NEAREST REGULARIZED SUBSPACE; DECISION FUSION; REGRESSION;
D O I
10.1109/JSTARS.2016.2542113
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes to combine collaborative representation (CR) and sparse representation (SR) for hyperspectral image classification. SR may select too few samples that cannot well reflect within-class variations, while CR generates nonsparse code using all the atoms that may unfortunately include between-class interference. To alleviate these problems, two methods fusing CR and SR are proposed, i.e., a fused representation-based classification (FRC) method and an elastic net representation-based classification (ENRC) method. FRC attempts to achieve the balance between CR and SR in the residual domain, while ENRC uses a convex combination of l(1) and l(2) penalties. Experimental results on two hyperspectral data demonstrate that the proposed methods outperform the original counterparts, i.e., CR-based classification (CRC) and SR-based classification (SRC).
引用
收藏
页码:4178 / 4187
页数:10
相关论文
共 40 条
[1]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[2]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[3]   Classification and Boosting with Multiple Collaborative Representations [J].
Chi, Yuejie ;
Porikli, Fatih .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (08) :1519-1531
[4]   Subspace Pursuit for Compressive Sensing Signal Reconstruction [J].
Dai, Wei ;
Milenkovic, Olgica .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (05) :2230-2249
[5]   A Discriminative Metric Learning Based Anomaly Detection Method [J].
Du, Bo ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (11) :6844-6857
[6]  
Du B, 2012, INT J FUZZY SYST, V14, P272
[7]   A spatial-spectral kernel-based approach for the classification of remote-sensing images [J].
Fauvel, M. ;
Chanussot, J. ;
Benediktsson, J. A. .
PATTERN RECOGNITION, 2012, 45 (01) :381-392
[8]   Adjusted Spectral Matched Filter for Target Detection in Hyperspectral Imagery [J].
Gao, Lianru ;
Yang, Bin ;
Du, Qian ;
Zhang, Bing .
REMOTE SENSING, 2015, 7 (06) :6611-6634
[9]   Subspace-Based Support Vector Machines for Hyperspectral Image Classification [J].
Gao, Lianru ;
Li, Jun ;
Khodadadzadeh, Mahdi ;
Plaza, Antonio ;
Zhang, Bing ;
He, Zhijian ;
Yan, Huiming .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (02) :349-353
[10]   The In-Crowd Algorithm for Fast Basis Pursuit Denoising [J].
Gill, Patrick R. ;
Wang, Albert ;
Molnar, Alyosha .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (10) :4595-4605