Admissible Sequences for Twisted Involutions in Weyl Groups

被引:2
作者
Haas, Ruth [1 ]
Helminck, Aloysius G. [2 ]
机构
[1] Smith Coll, Dept Math, Northampton, MA 01063 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2011年 / 54卷 / 04期
关键词
SEMISIMPLE SYMMETRIC-SPACES; BRUHAT ORDER; INVOLUTORIAL AUTOMORPHISM; TORI INVARIANT; VARIETIES; SUBGROUPS; ORBITS;
D O I
10.4153/CMB-2011-075-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let W be a Weyl group, Sigma a set of simple reflections in W related to a basis Delta for the root system Phi associated with W and theta an involution such that theta(Delta) = Delta. We show that the set of theta-twisted involutions in W, J(theta) = {w is an element of W vertical bar theta(w) = w(-1)} is in one to one correspondence with the set of regular involutions J(Id). The elements of J(theta) are characterized by sequences in Sigma which induce an ordering called the Richardson-Springer Poset. In particular, for Phi irreducible, the ascending Richardson-Springer Poset of J(theta), for nontrivial theta is identical to the descending Richardson-Springer Poset of J(Id).
引用
收藏
页码:663 / 675
页数:13
相关论文
共 19 条
[1]  
BOURBAKI N, 1981, ELEMENTS MATH GROUPE, pCH4
[2]  
CAHN P, DATA STRUCTURE UNPUB
[3]  
COOLEY C, COMBINATORIAL UNPUB
[4]  
HAAS R, 2010, P INT C ALG IN PRESS
[5]  
Helminck A.G., 2004, Invariant theory in all characteristics, P71
[6]   ALGEBRAIC-GROUPS WITH A COMMUTING PAIR OF INVOLUTIONS AND SEMISIMPLE SYMMETRIC-SPACES [J].
HELMINCK, AG .
ADVANCES IN MATHEMATICS, 1988, 71 (01) :21-91
[7]   Computing orbits of minimal parabolic k-subgroups acting on symmetric k-varieties [J].
Helminck, AG .
JOURNAL OF SYMBOLIC COMPUTATION, 2000, 30 (05) :521-553
[8]   Tori invariant under an involutorial automorphism .2. [J].
Helminck, AG .
ADVANCES IN MATHEMATICS, 1997, 131 (01) :1-92
[9]   TORI INVARIANT UNDER AN INVOLUTORIAL AUTOMORPHISM .1. [J].
HELMINCK, AG .
ADVANCES IN MATHEMATICS, 1991, 85 (01) :1-38
[10]   ON RATIONALITY PROPERTIES OF INVOLUTIONS OF REDUCTIVE GROUPS [J].
HELMINCK, AG ;
WANG, SP .
ADVANCES IN MATHEMATICS, 1993, 99 (01) :26-96