A conceptual model of pore-space blockage in mixed sediments using a new numerical approach, with implications for sediment bed stabilization

被引:10
作者
Bartzke, Gerhard [1 ]
Huhn, Katrin [1 ]
机构
[1] Univ Bremen, Ctr Marine Environm Sci, MARUM, D-28359 Bremen, Germany
关键词
UNIDIRECTIONAL FLOW; TRANSPORT; THRESHOLD; EROSION; MOTION; SIMULATION; PARTICLES; SCALES; SEA;
D O I
10.1007/s00367-015-0399-1
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In mixed sediment beds, erosion resistance can change relative to that of beds composed of a uniform sediment because of varying textural and/or other grain-size parameters, with effects on pore water flow that are difficult to quantify by means of analogue techniques. To overcome this difficulty, a three-dimensional numerical model was developed using a finite difference method (FDM) flow model coupled with a distinct element method (DEM) particle model. The main aim was to investigate, at a high spatial resolution, the physical processes occurring during the initiation of motion of single grains at the sediment-water interface and in the shallow subsurface of simplified sediment beds under different flow velocities. Increasing proportions of very fine sand (D-50=0.08 mm) were mixed into a coarse sand matrix (D-50=0.6 mm) to simulate mixed sediment beds, starting with a pure coarse sand bed in experiment 1 (0 wt% fines), and proceeding through experiment 2 (6.5 wt% fines), experiment 3 (10.5 wt% fines), and experiment 4 (28.7 wt% fines). All mixed beds were tested for their erosion behavior at predefined flow velocities varying in the range of U (1-5)=10-30 cm/s. The experiments show that, with increasing fine content, the smaller particles increasingly fill the spaces between the larger particles. As a consequence, pore water inflow into the sediment is increasingly blocked, i.e., there is a decrease in pore water flow velocity and, hence, in the flow momentum available to entrain particles. These findings are portrayed in a new conceptual model of enhanced sediment bed stabilization.
引用
收藏
页码:189 / 202
页数:14
相关论文
共 67 条
  • [1] Allen J.R. L., 1970, Physical Processes of Sedimentation
  • [2] [Anonymous], 2000, DYNAMICS ESTUARINE M
  • [3] [Anonymous], 2004, PFC 3D 3 1 MAN
  • [4] [Anonymous], MUDDY COASTS WORLD P, DOI [10.1016/S1568-2692(02)80088-2, DOI 10.1016/S1568-2692(02)80088-2]
  • [5] [Anonymous], 1998, HDB MATH COMPUTATION
  • [6] Progressive grain-size sorting along an intertidal energy gradient
    Bartholomae, A.
    Flemming, B. W.
    [J]. SEDIMENTARY GEOLOGY, 2007, 202 (03) : 464 - 472
  • [7] Bartzke G, 2012, ENVIRON SCI TECHNOL, V2, P378
  • [8] ON THE STABILIZING INFLUENCE OF SILT ON SAND BEDS
    Bartzke, Gerhard
    Bryan, Karin R.
    Pilditch, Conrad A.
    Huhn, Katrin
    [J]. JOURNAL OF SEDIMENTARY RESEARCH, 2013, 83 (7-8) : 691 - 703
  • [9] Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment
    Billerbeck, Markus
    Werner, Ursula
    Polerecky, Lubos
    Walpersdorf, Eva
    deBeer, Dirk
    Huettel, Markus
    [J]. MARINE ECOLOGY PROGRESS SERIES, 2006, 326 : 61 - 76
  • [10] Black K.S., 1997, J MARINE ENV ENG, V4, P43