Ground-Level NO2 Surveillance from Space Across China for High Resolution Using Interpretable Spatiotemporally Weighted Artificial Intelligence

被引:190
作者
Wei, Jing [5 ,13 ]
Liu, Song [1 ]
Li, Zhanqing [5 ]
Liu, Cheng [2 ]
Qin, Kai [3 ]
Liu, Xiong [4 ]
Pinker, Rachel T. [5 ]
Dickerson, Russell R. [5 ]
Lin, Jintai [6 ]
Boersma, K. F. [7 ,8 ]
Sun, Lin [9 ]
Li, Runze [10 ]
Xue, Wenhao [11 ]
Cui, Yuanzheng [12 ]
Zhang, Chengxin [2 ]
Wang, Jun [13 ]
机构
[1] Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
[2] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230026, Peoples R China
[3] China Univ Min & Technol, Sch Environm & Geoinformat, Xuzhou 221116, Jiangsu, Peoples R China
[4] Ctr Astrophys Harvard & Smithsonian, Atom & Mol Phys Div, Cambridge, MA 02138 USA
[5] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
[6] Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Lab Climate & Ocean Atmosphere Studies, Beijing 100871, Peoples R China
[7] Royal Netherlands Meteorol Inst, Satellite Observat Dept, NL-3731 GA De Bilt, Netherlands
[8] Wageningen Univ, Meteorol & Air Qual Grp, NL-6708 PB Wageningen, Netherlands
[9] Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China
[10] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA
[11] Qingdao Univ, Sch Econ, Qingdao 266071, Peoples R China
[12] Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China
[13] Univ Iowa, Dept Chem & Biochem Engn, Iowa Technol Inst, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA
关键词
TROPOSPHERIC NO2; NITROGEN-OXIDES; AIR-POLLUTION; EAST CHINA; EMISSIONS; PM2.5; OZONE; SO2; OMI;
D O I
10.1021/acs.est.2c03834
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
ABSTRACT: Nitrogen dioxide (NO2) at the ground level poses a serious threat to environmental quality and public health. This study developed a novel, artificial intelligence approach by integrating spatiotemporally weighted information into the missing extra-trees and deep forest models to first fill the satellite data gaps and increase data availability by 49% and then derive daily 1 km surface NO2 concentrations over mainland China with full spatial coverage (100%) for the period 2019-2020 by combining surface NO2 measurements, satellite tropospheric NO2 columns derived from TROPOMI and OMI, atmospheric reanalysis, and model simulations. Our daily surface NO2 estimates have an average out-of-sample (out-of-city) cross-validation coefficient of determination of 0.93 (0.71) and rootmean-square error of 4.89 (9.95) mu g/m3. The daily seamless high-resolution and high-quality dataset "ChinaHighNO2" allows us to examine spatial patterns at fine scales such as the urban-rural contrast. We observed systematic large differences between urban and rural areas (28% on average) in surface NO2, especially in provincial capitals. Strong holiday effects were found, with average declines of 22 and 14% during the Spring Festival and the National Day in China, respectively. Unlike North America and Europe, there is little difference between weekdays and weekends (within +/- 1 mu g/m3). During the COVID-19 pandemic, surface NO2 concentrations decreased considerably and then gradually returned to normal levels around the 72nd day after the Lunar New Year in China, which is about 3 weeks longer than the tropospheric NO2 column, implying that the former can better represent the changes in NOx emissions. KEYWORDS: surface NO2, air pollution, big data, artificial intelligence, COVID-19
引用
收藏
页码:9988 / 9998
页数:11
相关论文
共 60 条
[1]   Measurement report: Aircraft observations of ozone, nitrogen oxides, and volatile organic compounds over Hebei Province, China [J].
Benish, Sarah E. ;
He, Hao ;
Ren, Xinrong ;
Roberts, Sandra J. ;
Salawitch, Ross J. ;
Li, Zhanqing ;
Wang, Fei ;
Wang, Yuying ;
Zhang, Fang ;
Shao, Min ;
Lu, Sihua ;
Dickerson, Russell R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (23) :14523-14545
[2]   An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument [J].
Boersma, K. F. ;
Eskes, H. J. ;
Dirksen, R. J. ;
van der A, R. J. ;
Veefkind, J. P. ;
Stammes, P. ;
Huijnen, V. ;
Kleipool, Q. L. ;
Sneep, M. ;
Claas, J. ;
Leitao, J. ;
Richter, A. ;
Zhou, Y. ;
Brunner, D. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (09) :1905-1928
[3]   Validation of urban NO2 concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in situ surface measurements in Israeli cities [J].
Boersma, K. F. ;
Jacob, D. J. ;
Trainic, M. ;
Rudich, Y. ;
DeSmedt, I. ;
Dirksen, R. ;
Eskes, H. J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (12) :3867-3879
[4]  
Burrows JP, 1999, J ATMOS SCI, V56, P151, DOI 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO
[5]  
2
[6]   A kriging-calibrated machine learning method for estimating daily ground-level NO2 in mainland China [J].
Chen, Zhao-Yue ;
Zhang, Rong ;
Zhang, Tian-Hao ;
Ou, Chun-Quan ;
Guo, Yuming .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 690 :556-564
[7]   Machine learning-based estimation of ground-level NO2 concentrations over China [J].
Chi, Yulei ;
Fan, Meng ;
Zhao, Chuanfeng ;
Yang, Yikun ;
Fan, Hao ;
Yang, Xingchuan ;
Yang, Jie ;
Tao, Jinhua .
SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 807
[8]   Short-Term Effects of Nitrogen Dioxide on Mortality and Susceptibility Factors in 10 Italian Cities: The EpiAir Study [J].
Chiusolo, Monica ;
Cadum, Ennio ;
Stafoggia, Massimo ;
Galassi, Claudia ;
Berti, Giovanna ;
Faustini, Annunziata ;
Bisanti, Luigi ;
Vigotti, Maria Angela ;
Dessi, Maria Patrizia ;
Cernigliaro, Achille ;
Mallone, Sandra ;
Pacelli, Barbara ;
Minerba, Sante ;
Simonato, Lorenzo ;
Forastiere, Francesco .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2011, 119 (09) :1233-1238
[9]   Global fine-scale changes in ambient NO2 during COVID-19 lockdowns [J].
Cooper, Matthew J. ;
Martin, Randall, V ;
Hammer, Melanie S. ;
Levelt, Pieternel F. ;
Veefkind, Pepijn ;
Lamsal, Lok N. ;
Krotkov, Nickolay A. ;
Brook, Jeffrey R. ;
McLinden, Chris A. .
NATURE, 2022, 601 (7893) :380-+
[10]   Inferring ground-level nitrogen dioxide concentrations at fine spatial resolution applied to the TROPOMI satellite instrument [J].
Cooper, Matthew J. ;
Martin, Randall, V ;
McLinden, Chris A. ;
Brook, Jeffrey R. .
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (10)