The κ-Newtonian and κ-Carrollian algebras and their noncommutative spacetimes

被引:16
作者
Ballesteros, Angel [1 ]
Gubitosi, Giulia [1 ]
Gutierrez-Sagredo, Ivan [1 ,2 ]
Herranz, Francisco J. [1 ]
机构
[1] Univ Burgos, Dept Fis, Burgos 09001, Spain
[2] Univ Burgos, Dept Matemat & Comp, Burgos 09001, Spain
关键词
Quantum groups; Carroll; Newton-Hooke; Anti-de Sitter; Kappa-deformation; Noncommutative spaces; BICROSSPRODUCT STRUCTURE; POINCARE GROUP; QUANTUM; CONTRACTIONS; QUANTIZATION; DEFORMATIONS; TIME;
D O I
10.1016/j.physletb.2020.135461
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive the non-relativistic c -> infinity and ultra-relativistic c -> 0 limits of the kappa-deformed symmetries and corresponding spacetime in (3+1) dimensions, with and without a cosmological constant. We apply the theory of Lie bialgebra contractions to the Poisson version of the kappa-(A)dS quantum algebra, and quantize the resulting contracted Poisson-Hopf algebras, thus giving rise to the kappa-deformation of the Newtonian (Newton-Hooke and Galilei) and Carrollian (Para-Poincare, Para-Euclidean and Carroll) quantum symmetries, including their deformed quadratic Casimir operators. The corresponding kappa-Newtonian and kappa-Carrollian noncommutative spacetimes are also obtained as the non-relativistic and ultra-relativistic limits of the kappa-(A)dS noncommutative spacetime. These constructions allow us to analyze the non-trivial interplay between the quantum deformation parameter kappa, the curvature parameter eta and the speed of light parameter c. (c) 2020 Published by Elsevier B.V.
引用
收藏
页数:11
相关论文
共 70 条
[41]   Relative locality in κ-Poincare [J].
Gubitosi, Giulia ;
Mercati, Flavio .
CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (14)
[42]   Gauging the Carroll algebra and ultra-relativistic gravity [J].
Hartong, Jelle .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (08) :1-26
[43]   Covariant non-commutative space-time [J].
Heckman, Jonathan J. ;
Verlinde, Herman .
NUCLEAR PHYSICS B, 2015, 894 :58-74
[44]   Casimir invariants for the complete family of quasisimple orthogonal algebras [J].
Herranz, FJ ;
Santander, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (15) :5411-5426
[45]   Conformal symmetries of spacetimes [J].
Herranz, FJ ;
Santander, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (31) :6601-6618
[46]   (Anti) de Sitter/Poincare symmetries and representations from Poincare/Galilei through a classical deformation approach [J].
Herranz, Francisco J. ;
Santander, Mariano .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (01)
[47]   Minimal Length Scale Scenarios for Quantum Gravity [J].
Hossenfelder, Sabine .
LIVING REVIEWS IN RELATIVITY, 2013, 16
[48]   ON THE CONTRACTION OF GROUPS AND THEIR REPRESENTATIONS [J].
INONU, E ;
WIGNER, EP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1953, 39 (06) :510-524
[49]   Classical dynamics on curved Snyder space [J].
Ivetic, B. ;
Meljanac, S. ;
Mignemi, S. .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (10)
[50]   Doubly special relativity theories as different bases of κ-Poincare algebra [J].
Kowalski-Glikman, J ;
Nowak, S .
PHYSICS LETTERS B, 2002, 539 (1-2) :126-132