The κ-Newtonian and κ-Carrollian algebras and their noncommutative spacetimes

被引:16
作者
Ballesteros, Angel [1 ]
Gubitosi, Giulia [1 ]
Gutierrez-Sagredo, Ivan [1 ,2 ]
Herranz, Francisco J. [1 ]
机构
[1] Univ Burgos, Dept Fis, Burgos 09001, Spain
[2] Univ Burgos, Dept Matemat & Comp, Burgos 09001, Spain
关键词
Quantum groups; Carroll; Newton-Hooke; Anti-de Sitter; Kappa-deformation; Noncommutative spaces; BICROSSPRODUCT STRUCTURE; POINCARE GROUP; QUANTUM; CONTRACTIONS; QUANTIZATION; DEFORMATIONS; TIME;
D O I
10.1016/j.physletb.2020.135461
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive the non-relativistic c -> infinity and ultra-relativistic c -> 0 limits of the kappa-deformed symmetries and corresponding spacetime in (3+1) dimensions, with and without a cosmological constant. We apply the theory of Lie bialgebra contractions to the Poisson version of the kappa-(A)dS quantum algebra, and quantize the resulting contracted Poisson-Hopf algebras, thus giving rise to the kappa-deformation of the Newtonian (Newton-Hooke and Galilei) and Carrollian (Para-Poincare, Para-Euclidean and Carroll) quantum symmetries, including their deformed quadratic Casimir operators. The corresponding kappa-Newtonian and kappa-Carrollian noncommutative spacetimes are also obtained as the non-relativistic and ultra-relativistic limits of the kappa-(A)dS noncommutative spacetime. These constructions allow us to analyze the non-trivial interplay between the quantum deformation parameter kappa, the curvature parameter eta and the speed of light parameter c. (c) 2020 Published by Elsevier B.V.
引用
收藏
页数:11
相关论文
共 70 条
[1]   Non-relativistic spacetimes with cosmological constant [J].
Aldrovandi, R ;
Barbosa, AL ;
Crispino, LCB ;
Pereira, JG .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (02) :495-506
[2]   Waves on noncommutative space-time and gamma-ray bursts [J].
Amelino-Camelia, G ;
Majid, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (27) :4301-4323
[3]   Quantum-Spacetime Phenomenology [J].
Amelino-Camelia, Giovanni .
LIVING REVIEWS IN RELATIVITY, 2013, 16
[4]   Relative-locality distant observers and the phenomenology of momentum-space geometry [J].
Amelino-Camelia, Giovanni ;
Arzano, Michele ;
Kowalski-Glikman, Jerzy ;
Rosati, Giacomo ;
Trevisan, Gabriele .
CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (07)
[5]   POSSIBLE KINEMATICS [J].
BACRY, H ;
LEVYLEBL.JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (10) :1605-&
[6]   Spin and statistics on the Groenewold-Moyal plane: Pauli-forbidden levels and transitions [J].
Balachandran, A. P. ;
Mangano, G. ;
Pinzul, A. ;
Vaidya, S. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (15) :3111-3126
[7]   CLASSICAL DEFORMATIONS, POISSON-LIE CONTRACTIONS, AND QUANTIZATION OF DUAL LIE BIALGEBRAS [J].
BALLESTEROS, A ;
HERRANZ, FJ ;
DELOLMO, MA ;
SANTANDER, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (02) :631-640
[8]   Curved momentum spaces from quantum (anti-)de Sitter groups in (3+1) dimensions [J].
Ballesteros, A. ;
Gubitosi, G. ;
Gutierrez-Sagredo, I. ;
Herranz, F. J. .
PHYSICAL REVIEW D, 2018, 97 (10)
[9]   A non-commutative Minkowskian spacetime from a quantum AdS algebra [J].
Ballesteros, A ;
Bruno, NR ;
Herranz, FJ .
PHYSICS LETTERS B, 2003, 574 (3-4) :276-282
[10]   QUANTUM (2+1) KINEMATICAL ALGEBRAS - A GLOBAL APPROACH [J].
BALLESTEROS, A ;
HERRANZ, FJ ;
DELOLMO, MA ;
SANTANDER, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (04) :1283-1297