Quasiconvex functions incorporating volumetric constraints are rank-one convex

被引:35
作者
Conti, Sergio [1 ]
机构
[1] Univ Duisburg Essen, Fachbereich Math, D-47057 Duisburg, Germany
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2008年 / 90卷 / 01期
关键词
quasiconvexity; volumetric constraint;
D O I
10.1016/j.matpur.2008.04.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a quasiconvex function W:M-nxn ->[0, infinity] which is finite on the set Sigma = {F: det F = 1} is rank-one convex, and hence continuous, on Sigma; and the same for constraints on minors. This implies that the rank-one convex envelope gives an upper bound on the quasiconvex envelope of any energy density modeling an incompressible material. Our result is based on the construction of an appropriate piecewise affine function u such that del u is an element of Sigma almost everywhere. (C) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:15 / 30
页数:16
相关论文
共 26 条
[11]  
FONSECA I, 1988, J MATH PURE APPL, V67, P175
[12]  
FORTUNELLI A, 2007, CONSTITUTIVE MODEL P
[13]  
Gromov M, 1986, PARTIAL DIFFERENTIAL
[14]  
KIRCHHEIM B, 2002, MPI MIS LECT NOTES, V16
[15]  
KIRCHHEIM B, COMMUNICATION
[16]  
Kruzík M, 1999, J CONVEX ANAL, V6, P207
[17]  
Kuiper N., 1955, NEDERL AKAD WETENS A, V58, P545
[18]  
Kuiper N.H., 1955, INDAG MATH P, V58, P683
[19]  
Morrey B., 1952, Pacific J. Math., V2, P25, DOI [10.2140/pjm.1952.2.25, DOI 10.2140/PJM.1952.2.25, DOI 10.2140/PJM.1952.2.25)]
[20]   Quasiconvexity is not invariant under transposition [J].
Müller, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 :389-395