Synthesis of PAMAM dendrimer-based fast cross-linking hydrogel for biofabrication

被引:25
作者
Bi, Xiangdong [1 ]
Luckanagul, Jittima Amie [2 ]
Allen, Ashley [1 ]
Ramaboli, Matsepo [2 ]
Campbell, Emily [1 ]
West, Davey [1 ]
Maturavongsadit, Panita [2 ]
Brummett, Katelyn [1 ]
Wang, Qian [2 ]
机构
[1] Charleston Southern Univ, Dept Phys Sci, Charleston, SC 29406 USA
[2] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA
关键词
hydrogel; PAMAM dendrimer; hyaluronic acid; biofabrication; RGD peptide; bone marrow stem cells; IN-VITRO; BIOMEDICAL APPLICATIONS; STEM-CELLS; TISSUE; DELIVERY; HYALURONAN; CONJUGATE; SCAFFOLDS; BINDING; PROTEIN;
D O I
10.1080/09205063.2015.1056716
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Hydrogels possess great potential in biofabrication because they allow cell encapsulation and proliferation in a highly hydrated three-dimensional environment, and they provide biologically relevant chemical and physical signals. However, development of hydrogel systems that mimic the complexity of natural extracellular matrix remains a challenge. In this study, we report the development of a binary hydrogel system containing a synthetic poly(amido amine) (PAMAM) dendrimer and a natural polymer, i.e., hyaluronic acid (HA), to form a fast cross-linking hydrogel. Live cell staining experiment and cell viability assay of bone marrow stem cells demonstrated that cells were viable and proliferating in the in situ formed PAMAM/HA hydrogel system. Furthermore, introduction of a Arginylglycylaspartic acid (RGD) peptide into the hydrogel system significantly improved the cell viability, proliferation, and attachment. Therefore, this PAMAM/HA hydrogel system could be a promising platform for various applications in biofabrication.
引用
收藏
页码:669 / 682
页数:14
相关论文
共 54 条
[1]   Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model [J].
Astashkina, Anna I. ;
Jones, Clint F. ;
Thiagarajan, Giridhar ;
Kurtzeborn, Kristen ;
Ghandehari, Hamid ;
Brooks, Benjamin D. ;
Grainger, David W. .
BIOMATERIALS, 2014, 35 (24) :6323-6331
[2]   Dendrimers in Medical Nanotechnology Application of Dendrimer Molecules in Bioimaging and Cancer Treatment [J].
Barrett, Tristan ;
Ravizzini, Gregory ;
Choyke, Peter L. ;
Kobayashi, Hisataka .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2009, 28 (01) :12-22
[3]   Structure, swelling, and drug release of thermoresponsive poly(amidoamine) dendrimer-poly(N-isopropylacrylamide) hydrogels [J].
Bekhradnia, Sara ;
Zhu, Kaizheng ;
Knudsen, Kenneth D. ;
Sande, Sverre Arne ;
Nystrom, Bo .
JOURNAL OF MATERIALS SCIENCE, 2014, 49 (17) :6102-6110
[4]   Synthesis, characterization and stability of a luteinizing hormone-releasing hormone (LHRH)-functionalized poly(amidoamine) dendrimer conjugate [J].
Bi, Xiangdong ;
Shi, Xiangyang ;
Baker, James R., Jr. .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2008, 19 (01) :131-142
[5]  
Binetti VR, 2014, J APPL POLYM SCI, V131, DOI [10.1002/APP.40843, 10.1002/app.40843]
[6]  
Cabral J, 2011, FUTURE MED CHEM, V3, P1877, DOI [10.4155/fmc.11.134, 10.4155/FMC.11.134]
[7]   Hydrogels for protein delivery in tissue engineering [J].
Censi, Roberta ;
Di Martino, Piera ;
Vermonden, Tina ;
Hennink, Wim E. .
JOURNAL OF CONTROLLED RELEASE, 2012, 161 (02) :680-692
[8]   A Printable Photopolymerizable Thermosensitive p(HPMAm-lactate)-PEG Hydrogel for Tissue Engineering [J].
Censi, Roberta ;
Schuurman, Wouter ;
Malda, Jos ;
di Dato, Giorgio ;
Burgisser, Petra E. ;
Dhert, Wouter J. A. ;
van Nostrum, Cornelus F. ;
di Martino, Piera ;
Vermonden, Tina ;
Hennink, Wim E. .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (10) :1833-1842
[9]  
Chen WC, 2013, TISSUE ENG PT A, V19, P915, DOI [10.1089/ten.tea.2012.0172, 10.1089/ten.TEA.2012.0172]
[10]   A modular and supramolecular approach to bioactive scaffolds for tissue engineering [J].
Dankers, PYW ;
Harmsen, MC ;
Brouwer, LA ;
Van Luyn, MJA ;
Meijer, EW .
NATURE MATERIALS, 2005, 4 (07) :568-574