A-site Cation Effects on Hot Carrier Relaxation in Perovskites by Nonadiabatic Molecular Dynamics Simulations

被引:2
作者
He, Jinlu [1 ]
Long, Run [1 ]
Fang, Weihai [1 ]
机构
[1] Beijing Normal Univ, Coll Chem, Key Lab Theoret & Computat Photochem, Minist Educ, Beijing 100875, Peoples R China
来源
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE | 2020年 / 41卷 / 03期
基金
中国国家自然科学基金;
关键词
Perovskite; A-site cation; Hot carrier energy relaxation; Nonadiabatic molecular dynamics; Time-dependent density functional theory; HALIDE PEROVSKITES; LEAD HALIDES; ELECTRON; HOLE; RECOMBINATION; DIFFUSION;
D O I
10.7503/cjcu20190701
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years , perovskites have become a research hotspot in the field of solar cells due to their excellent optical and electrical properties. A large number of experiments reported that hot carries relaxation times follow the trend CsPbBr3> MAPbBr(3) (MA = CH3NH3) > FAPbBr(3) [FA = HC (NH2) (2)]. However, the underlying mechanism of the A-site cation( Cs+, MA(+), FA(+)) effects on the relaxation time remains unclear, the hot electrons and holes relaxation of the three perovskiteswere investigated using time-domain density functional theory combined with nonadiabatic molecular dynamics. The obtained time scales agreed well with experiment. This is because A-site cation affects electronic-vibrational coupling with the inorganic Pb-Br framework via electrostatic interaction and hydrogen bond , leading to the strength of nonadiabatic coupling decreasing from FAPbBr(3) to MAPbBr(3), to CsPbBr3. As a result, the hot carrier relaxation times decreases as the same trend. The study suggests that rational choice of A-site cations provides an excellent strategy to the optimize the perfkifmance of perovskite solar cells.
引用
收藏
页码:439 / 446
页数:8
相关论文
共 54 条
[1]   The PYXAID Program for Non-Adiabatic Molecular Dynamics in Condensed Matter Systems [J].
Akimov, Alexey V. ;
Prezhdo, Oleg V. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (11) :4959-4972
[2]   Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation [J].
Azpiroz, Jon M. ;
Mosconi, Edoardo ;
Bisquert, Juan ;
De Angelis, Filippo .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (07) :2118-2127
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Cation-Dependent Hot Carrier Cooling in Halide Perovskite Nanocrystals [J].
Chen, Junsheng ;
Messing, Maria E. ;
Zheng, Kaibo ;
Pullerits, Tonu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (08) :3532-3540
[5]   Composition-Dependent Hot Carrier Relaxation Dynamics in Cesium Lead Halide (CsPbX3, X = Br and I) Perovskite Nanocrystals [J].
Chung, Heejae ;
Jung, Seok Il ;
Kim, Hyo Jin ;
Cha, Wonhee ;
Sim, Eunji ;
Kim, Dongho ;
Koh, Weon-Kyu ;
Kim, Jiwon .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (15) :4160-4164
[6]   Trajectory surface hopping in the time-dependent Kohn-Sham approach for electron-nuclear dynamics [J].
Craig, CF ;
Duncan, WR ;
Prezhdo, OV .
PHYSICAL REVIEW LETTERS, 2005, 95 (16)
[7]   Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance [J].
De Wolf, Stefaan ;
Holovsky, Jakub ;
Moon, Soo-Jin ;
Loeper, Philipp ;
Niesen, Bjoern ;
Ledinsky, Martin ;
Haug, Franz-Josef ;
Yum, Jun-Ho ;
Ballif, Christophe .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (06) :1035-1039
[8]  
Dong X., 2016, CHINESE SCI BULL, V1025, P1025
[9]   Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites [J].
El-Mellouhi, Fedwa ;
Marzouk, Asma ;
Bentria, El Tayeb ;
Rashkeev, Sergey N. ;
Kais, Sabre ;
Alharbi, Fahhad H. .
CHEMSUSCHEM, 2016, 9 (18) :2648-2655
[10]   Unbalanced Hole and Electron Diffusion in Lead Bromide Perovskites [J].
Elbaz, Giselle A. ;
Straus, Daniel B. ;
Semonin, Octavi E. ;
Hull, Trevor D. ;
Paley, Daniel W. ;
Kim, Philip ;
Owen, Jonathan S. ;
Kagan, Cherie R. ;
Roy, Xavier .
NANO LETTERS, 2017, 17 (03) :1727-1732