The maximum number of triangles in a K4-free graph

被引:10
作者
Eckhoff, J [1 ]
机构
[1] Univ Dortmund, Fachbereich Math, D-44221 Dortmund, Germany
关键词
D O I
10.1016/S0012-365X(98)00120-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let v, e and t denote the number of vertices, edges and triangles, respectively, of a K-4-free graph. Fisher (1988) proved that t less than or equal to(e/3)(3/2), independently of v. His bound is attained when e=3k(2) for some integer k, but not in general. We find here, for any given value of e, the maximum possible value of t. Again, the maximum does not depend on t,. We also show that certain 'gaps' occur in the set of triples (v,e,t) realizable by K-4-free graphs. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:95 / 106
页数:12
相关论文
共 13 条
[1]  
Andrasfai B., 1974, Discrete Mathematics, V8, P205, DOI 10.1016/0012-365X(74)90133-2
[2]  
Erdo P., 1962, Magyar Tud. Akad. Mat. Kutato Int. Kozl, VA3, P459
[3]  
Erdo P., 1955, Riveon Lematematika, V9, P13
[4]  
ERDOS P, 1964, CAN MATH B, V7, P53
[5]  
Erdos P., 1962, ILLINOIS J MATH, V6, P122
[6]   DEPENDENCE POLYNOMIALS [J].
FISHER, DC ;
SOLOW, AE .
DISCRETE MATHEMATICS, 1990, 82 (03) :251-258
[7]   THE NUMBER OF TRIANGLES IN A K4-FREE GRAPH [J].
FISHER, DC .
DISCRETE MATHEMATICS, 1988, 69 (02) :203-205
[8]   SHADOWS OF COLORED COMPLEXES [J].
FRANKL, P ;
FUREDI, Z ;
KALAI, G .
MATHEMATICA SCANDINAVICA, 1988, 63 (02) :169-178
[9]  
LOVASZ L, 1976, C NUMER, V15, P431
[10]  
NIKIFOROV VS, 1981, C R ACAD BULG SCI, V34, P969