EQUATIONS OF STATE IN A FINITE DIFFERENCE LATTICE BOLTZMANN MODEL

被引:0
|
作者
Cristea, Artur [1 ]
机构
[1] Acad Romana, Ctr Fundamental & Adv Tech Res, Timisoara Div, Timisoara 300223, Romania
关键词
Numerical schemes; Two phase fluids; Fluid interfaces; LIQUID-VAPOR SYSTEMS; FLUID-FLOWS; SIMULATION;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The objective of this work is the investigation of the stability and the miscibility gap recovered in finite difference lattice Boltzmann models for two phase liquid - vapour systems. Various equations of state were considered as well as various finite difference schemes. Second order numerical schemes were used to minimize the numerical effects and the spurious velocity in the interface region
引用
收藏
页码:71 / 77
页数:7
相关论文
共 50 条
  • [1] Equations of state in a lattice Boltzmann model
    Yuan, P
    Schaefer, L
    PHYSICS OF FLUIDS, 2006, 18 (04)
  • [2] Finite-difference lattice Boltzmann model for nonlinear convection-diffusion equations
    Wang, Huili
    Shi, Baochang
    Liang, Hong
    Chai, Zhenhua
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 309 : 334 - 349
  • [3] Lattice Boltzmann model approximated with finite difference expressions
    Dubois, Francois
    Lallemand, Pierre
    Obrecht, Christian
    Tekitek, Mohamed Mandi
    COMPUTERS & FLUIDS, 2017, 155 : 3 - 8
  • [4] Equivalent finite difference and partial differential equations for the lattice Boltzmann method
    Fucik, Radek
    Straka, Robert
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 90 : 96 - 103
  • [5] Implementation of fundamental equations of state in a lattice Boltzmann model
    Zheng, Zhaoqi
    Huang, Yonghua
    PHYSICS OF FLUIDS, 2025, 37 (02)
  • [6] Coupling a lattice Boltzmann and a finite difference scheme
    Albuquerque, P
    Alemani, D
    Chopard, B
    Leone, P
    COMPUTATIONAL SCIENCE - ICCS 2004, PROCEEDINGS, 2004, 3039 : 540 - 547
  • [7] Viscosity of finite difference lattice Boltzmann models
    Sofonea, V
    Sekerka, RF
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 184 (02) : 422 - 434
  • [8] A finite difference interpretation of the lattice Boltzmann method
    Junk, M
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2001, 17 (04) : 383 - 402
  • [9] On equations of state in a lattice Boltzmann method
    Kupershtokh, A. L.
    Medvedev, D. A.
    Karpov, D. I.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (05) : 965 - 974
  • [10] Novel finite difference lattice Boltzmann model for gas-liquid flow
    Wu, Long
    Tsutahara, Michihisa
    Tajiri, Shinsuke
    COMPLEX SYSTEMS-BOOK 1, 2008, 982 : 383 - 386