Synergistic hydrogen generation from AlLi alloy and solid-state NaBH4 activated by CoCl2 in water for portable fuel cell

被引:33
作者
Fan, Mei-qiang [1 ]
Liu, Shu [1 ]
Sun, Li-Xian [2 ]
Xu, Fen [3 ]
Wang, Shuang [2 ]
Zhang, Jian [2 ]
Mei, De-sheng [4 ]
Huang, Fen-lei [5 ]
Zhang, Qing-ming [5 ]
机构
[1] China Jiliang Univ, Dept Mat Sci & Engn, Hangzhou 310018, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Mat & Thermochem Lab, Dalian 116023, Peoples R China
[3] Liaoning Normal Univ, Dept Chem Engn, Dalian 116029, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Mat Med, Dept Med Chem, Shanghai 201203, Peoples R China
[5] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
关键词
Hydrogen generation; AlLi alloy; Hydrolysis mechanism; NaBH4; SODIUM-BOROHYDRIDE; CATALYST; ALUMINUM; METAL;
D O I
10.1016/j.ijhydene.2011.06.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state AlLi/NaBH4 mixture activated by CoCl2 salt is fabricated for hydrogen generation via a milling process, providing uniform dispersion of AlLi alloy and CoCl2 salt among pulverized NaBH4 particles in order to improve NaBH4 hydrolysis through the contact of NaBH4 with active catalytic sites. The active catalytic sites come from CO2B loaded in Al(OH)(3) (Bayerite) or LiAl2(OH)(7) hydrate, generated from the reaction of CoCl2, AlLi alloy, and NaBH4 in water. The results show that the gravimetric hydrogen storage capacity is as high as 6.4 wt.% and an efficiency of above 90% in 30-min hydrolysis at 323 K could be achieved using the limited amount of water. The hydrogen generation amount and rate could be regulated by changing the composition, mixing style, mixture/water weight ratio, and hydrolysis temperature. The relative mechanism is explored. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4571 / 4579
页数:9
相关论文
共 20 条
[1]   Supported CoCl2 catalyst for NaBH4 dehydrogenation [J].
Cakanyildirim, Cetin ;
Guru, Metin .
RENEWABLE ENERGY, 2010, 35 (04) :839-844
[2]   Aluminum chloride for accelerating hydrogen generation from sodium borohydride [J].
Demirci, U. B. ;
Akdim, O. ;
Miele, P. .
JOURNAL OF POWER SOURCES, 2009, 192 (02) :310-315
[3]  
Evgeny S, 2007, INT J HYDROGEN ENERG, V32, P207
[4]   Hydrogen generation via alcoholysis reaction using ball-milled Mg-based materials [J].
Grosjean, M. -H. ;
Zidoune, M. ;
Huot, J. -Y. ;
Roue, L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (09) :1159-1163
[5]   Hydrogen storage in a CaH2/LiBH4 destabilized metal hydride system [J].
Ibikunle, A. ;
Goudy, A. J. ;
Yang, H. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 475 (1-2) :110-115
[6]   Formation and chemical leaching of non-equilibrium Al0.6(Co75Cu25)0.4 alloy powders by rod milling [J].
Kim, HG ;
Myung, WN ;
Sumiyama, K ;
Suzuki, K .
JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 398 (1-2) :74-79
[7]  
Klug H.P., 1974, XRAY DIFFRACTION PRO, VSecond, P618
[8]   Activation of aluminum metal and its reaction with water [J].
Kravchenko, OV ;
Semenenko, KN ;
Bulychev, BM ;
Kalmykov, KB .
JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 397 (1-2) :58-62
[9]   A review: Hydrogen generation from borohydride hydrolysis reaction [J].
Liu, B. H. ;
Li, Z. P. .
JOURNAL OF POWER SOURCES, 2009, 187 (02) :527-534
[10]   Novel fabrication of solid-state NaBH4/Ru-based catalyst composites for hydrogen evolution using a high-energy ball-milling process [J].
Liu, Cheng-Hong ;
Chen, Bing-Hung ;
Hsueh, Chan-Li ;
Ku, Jie-Ren ;
Tsau, Fanghei .
JOURNAL OF POWER SOURCES, 2010, 195 (12) :3887-3892