Isolation and functional characterization of a Medicago sativa L. gene, MsLEA3-1

被引:20
作者
Bai, Yongqin [3 ]
Yang, Qingchuan [3 ]
Kang, Junmei [3 ]
Sun, Yan [1 ,2 ]
Gruber, Margaret [4 ]
Chao, Yuehui [3 ]
机构
[1] China Agr Univ, Dept Anim Sci, Beijing 100193, Peoples R China
[2] China Agr Univ, Technol Coll, Beijing 100193, Peoples R China
[3] Chinese Acad Agr Sci, Inst Anim Sci, Beijing 100193, Peoples R China
[4] Agr & Agri Food Canada, Saskatoon Res Ctr, Saskatoon, SK S7N 0X2, Canada
关键词
Medicago sativa L; Late embryogenesis abundant protein; Gene expression; Subcellular localization; Expression; Salt stress; Transgenic tobacco; EMBRYOGENESIS ABUNDANT PROTEIN; LEA PROTEIN; FREEZING TOLERANCE; DROUGHT TOLERANCE; ABSCISIC-ACID; SALT STRESS; EXPRESSION; RICE; HVA1; DEHYDRATION;
D O I
10.1007/s11033-011-1048-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A full-length cDNA of 1,728 nt, called MsLEA3-1, was cloned from alfalfa by rapid amplification of cDNA ends from an expressed sequence tag homologous to soybean pGmPM10 (accession No. AAA91965.1). MsLEA3-1, encodes a deduced protein of 436 amino acids, a calculated molecular weight of 47.0 kDa, a theoretical iso-electric point of 5.18, and closest homology with late embryogenesis abundant proteins in soybean. Sequence homology suggested a signal peptide in the N terminus, and subcellular localization with GFP revealed that MsLEA3-1 was localized preferentially to the nucleolus. The transcript titre of MsLEA3-1 was strongly enriched in leaves compared with roots and stems of mature alfalfa plants. Gene expression of MsLEA3-1 was strongly induced when seedlings were treated with NaCl and ABA. Expression of the MsLEA3-1 transgenic was detected in transgenic tobacco. Malondialdehyde content and, electrical conductivity content were reduced and electrical conductivity and proline content were increased in transgenic tobacco compared with non-transgenic tobacco under salt stress. The results showed that accumulation of the MsLEA3-1 protein in the vegetative tissues of transgenic plants enhanced their tolerance to salt stress. These results demonstrate a role for the MsLEA3-1 protein in stress protection and suggest the potential of the MsLEA3-1 gene for genetic engineering of salt tolerance.
引用
收藏
页码:2883 / 2892
页数:10
相关论文
共 33 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]  
[Anonymous], 2007, CSH PROTOCOLS, DOI [10.1101/pdb.prot4689, DOI 10.1101/PDB.PROT4689]
[3]   HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection [J].
Babu, RC ;
Zhang, JX ;
Blum, A ;
Ho, THD ;
Wu, R ;
Nguyen, HT .
PLANT SCIENCE, 2004, 166 (04) :855-862
[4]   RAPID DETERMINATION OF FREE PROLINE FOR WATER-STRESS STUDIES [J].
BATES, LS ;
WALDREN, RP ;
TEARE, ID .
PLANT AND SOIL, 1973, 39 (01) :205-207
[5]   Anhydrobiosis - Plant desiccation gene found in a nematode [J].
Browne, J ;
Tunnacliffe, A ;
Burnell, A .
NATURE, 2002, 416 (6876) :38-38
[6]   Dehydrins: A commonality in the response of plants to dehydration and low temperature [J].
Close, TJ .
PHYSIOLOGIA PLANTARUM, 1997, 100 (02) :291-296
[7]  
Doyle JJ., 1987, FOCUS, V19, P11, DOI DOI 10.2307/2419362
[8]   OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression [J].
Dubouzet, JG ;
Sakuma, Y ;
Ito, Y ;
Kasuga, M ;
Dubouzet, EG ;
Miura, S ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT JOURNAL, 2003, 33 (04) :751-763
[9]   A REPEATING 11-MER AMINO-ACID MOTIF AND PLANT DESICCATION [J].
DURE, L .
PLANT JOURNAL, 1993, 3 (03) :363-369
[10]   LEA proteins prevent protein aggregation due to water stress [J].
Goyal, K ;
Walton, LJ ;
Tunnacliffe, A .
BIOCHEMICAL JOURNAL, 2005, 388 :151-157