Thermodynamics of rotating quantum matter in the virial expansion

被引:3
作者
Berger, C. E. [1 ]
Morrell, K. J. [1 ]
Drut, J. E. [1 ]
机构
[1] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
BOSE-EINSTEIN CONDENSATION; FERMI GASES; OSCILLATIONS; VORTICES; ATOMS;
D O I
10.1103/PhysRevA.102.023309
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We characterize the high-temperature thermodynamics of rotating bosons and fermions in two-dimensional (2D) and three-dimensional (3D) isotropic harmonic trapping potentials. We begin by calculating analytically the conventional virial coefficients b(n) for all n in the noninteracting case, as functions of the trapping and rotational frequencies. We also report on the virial coefficients for the angular momentum and associated moment of inertia. Using the b(n) coefficients, we analyze the deconfined limit (in which the angular frequency matches the trapping frequency) and derive explicitly the limiting form of the partition function, showing from the thermodynamic standpoint how both the 2D and 3D cases become effectively homogeneous 2D systems. To tackle the virial coefficients in the presence of weak interactions, we implement a coarse temporal lattice approximation and obtain virial coefficients up to third order.
引用
收藏
页数:10
相关论文
共 35 条
[1]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[2]   Semiclassical description of finite fermion systems at finite temperature in a generalised Routhian approach [J].
Bencheikh, K ;
Bartel, J ;
Quentin, P .
NUCLEAR PHYSICS A, 2006, 764 :79-108
[3]   Energy, contact, and density profiles of one-dimensional fermions in a harmonic trap via nonuniform-lattice Monte Carlo calculations [J].
Berger, C. E. ;
Anderson, E. R. ;
Drut, J. E. .
PHYSICAL REVIEW A, 2015, 91 (05)
[4]   Hard-wall and non-uniform lattice Monte Carlo approaches to one-dimensional Fermi gases in a harmonic trap [J].
Berger, Casey E. ;
Drut, Joaquin E. ;
Porter, William J. .
COMPUTER PHYSICS COMMUNICATIONS, 2016, 208 :103-108
[5]   The quantum theory of the non-ideal gas. II. Behaviour at low temperatures [J].
Beth, E ;
Uhlenbeck, GE .
PHYSICA, 1937, 4 :0915-0924
[6]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[7]   Two cold atoms in a harmonic trap [J].
Busch, T ;
Englert, BG ;
Rzazewski, K ;
Wilkens, M .
FOUNDATIONS OF PHYSICS, 1998, 28 (04) :549-559
[8]   Ultra-cold polarized Fermi gases [J].
Chevy, Frederic ;
Mora, Christophe .
REPORTS ON PROGRESS IN PHYSICS, 2010, 73 (11)
[9]   Feshbach resonances in ultracold gases [J].
Chin, Cheng ;
Grimm, Rudolf ;
Julienne, Paul ;
Tiesinga, Eite .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1225-1286
[10]   Rapidly rotating atomic gases [J].
Cooper, N. R. .
ADVANCES IN PHYSICS, 2008, 57 (06) :539-616