Posttranslational modifications of apolipoprotein A-II proteoforms in type 2 diabetes

被引:9
作者
Azizkhanian, Ida [1 ]
Trenchevska, Olgica [2 ]
Bashawri, Yara [1 ,3 ]
Hu, Jiaqi [1 ]
Koska, Juraj [4 ]
Reaven, Peter D. [4 ]
Nelson, Randall W. [2 ]
Nedelkov, Dobrin [2 ]
Yassine, Hussein N. [1 ]
机构
[1] Univ Southern Calif, Dept Med, 2250 Alcazar St,Room 210, Los Angeles, CA 90033 USA
[2] Arizona State Univ, Biodesign, Tempe, AZ USA
[3] King Fahad Med City, Riyadh, Saudi Arabia
[4] Phoenix VA Hlth Care Syst, Dept Med, Phoenix, AZ USA
关键词
Apolipoprotein A-II; Oxidations; Mass spectrometry; Diabetes; OXIDATIVE STRESS; TRANSGENIC MICE; APOA-II; ATHEROSCLEROSIS; MELLITUS;
D O I
10.1016/j.jacl.2016.03.001
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
BACKGROUND: Apolipoprotein A-II (apoA-11) is the second most abundant protein in high-density lipoprotein particles. However, it exists in plasma in multiple forms. The effect of diabetes on apoA-II proteoforms is not known. OBJECTIVE: Our objective was to characterize plasma apoA-II proteoforms in participants with and without type 2 diabetes. METHODS: Using a novel mass spectrometric immunoassay, the relative abundance of apoA-II proteoforms was examined in plasma of 30 participants with type 2 diabetes and 25 participants without diabetes. RESULTS: Six apoA-11 proteoforms (monomer, truncated TQ monomer, truncated Q monomer, dimer, truncated Q dimer, and truncated 2Qs dimer) and their oxidized proteoforms were identified The ratios of oxidized monomer and all oxidized proteoforms to the native apoA-11 were significantly greater in the diabetic group (P = .004 and P = .005, respectively) compared with the nondiabetic group. CONCLUSION: The relative abundance of oxidized apoA-II is significantly increased in type 2 diabetes. (C) 2016 National Lipid Association. All rights reserved.
引用
收藏
页码:808 / 815
页数:8
相关论文
共 22 条
[1]  
ANANTHARAMAIAH GM, 1988, J LIPID RES, V29, P309
[2]   ROLE OF OXIDATIVE STRESS IN DEVELOPMENT OF COMPLICATIONS IN DIABETES [J].
BAYNES, JW .
DIABETES, 1991, 40 (04) :405-412
[3]   Overexpression of human apolipoprotein A-II in mice induces hypertriglyceridemia due to defective very low density lipoprotein hydrolysis [J].
Boisfer, E ;
Lambert, G ;
Atger, V ;
Tran, NQ ;
Pastier, D ;
Benetollo, C ;
Trottier, JF ;
Beaucamps, I ;
Antonucci, M ;
Laplaud, M ;
Griglio, S ;
Chambaz, J ;
Kalopissis, AD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (17) :11564-11572
[4]   AMINO-ACID SEQUENCE OF HUMAN APOLP-GLM-II (APON-II), AN APOLIPOPROTEIN ISOLATED FROM HIGH-DENSITY LIPOPROTEIN COMPLEX [J].
BREWER, HB ;
RONAN, R ;
LUX, SE ;
JOHN, KM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1972, 69 (05) :1304-&
[5]   Apolipoprotein A-II: Evaluating its significance in dyslipidaemia, insulin resistance, and atherosclerosis [J].
Chan, Dick C. ;
Ng, Theodore W. K. ;
Watts, Gerald F. .
ANNALS OF MEDICINE, 2012, 44 (04) :313-324
[6]   Lipid peroxidation in diabetes mellitus [J].
Davi, G ;
Falco, A ;
Patrono, C .
ANTIOXIDANTS & REDOX SIGNALING, 2005, 7 (1-2) :256-268
[7]   Oxidative stress status in patients with diabetes mellitus: relationship to diet [J].
Dierckx, N ;
Horvath, G ;
van Gils, C ;
Vertommen, J ;
van de Vliet, J ;
De Leeuw, I ;
Manuel-y-Keenoy, B .
EUROPEAN JOURNAL OF CLINICAL NUTRITION, 2003, 57 (08) :999-1008
[8]  
Escolà-Gil JC, 2001, J LIPID RES, V42, P241
[9]   Contrasting in vivo effects of murine and human apolipoprotein A-II - Role of monomer versus dimer [J].
Gong, EL ;
Stoltzfus, LJ ;
Brion, CM ;
Murugesh, D ;
Rubin, EM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (11) :5984-5987
[10]  
HEDRICK CC, 1993, J BIOL CHEM, V268, P20676