A sufficient condition for graphs to be fractional (k, m)-deleted graphs

被引:22
作者
Zhou, Sizhong [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Math & Phys, Zhenjiang 212003, Jiangsu, Peoples R China
关键词
Graph; Binding number; k-factor; Fractional k-factor; Fractional (k. m)-deleted graph; K-FACTORS; K)-CRITICAL GRAPHS; EXISTENCE; (A;
D O I
10.1016/j.aml.2011.03.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph, and k a positive integer. Let h : E(G) -> [0, 1] be a function. If Sigma(e epsilon x) h(e) = k holds for each x epsilon V(G), then we call G vertical bar F(h vertical bar) a fractional k-factor of G with indicator function h where F(h) = {e epsilon E(G) : h(e) > 0}. A graph G is called a fractional (k, m)deleted graph if there exists a fractional k-factor G vertical bar F(h)vertical bar of G with indicator function It such that h(e) = 0 for any e epsilon E(H), where H is any subgraph of G with m edges. In this paper, we use a binding number to obtain a sufficient condition for a graph to be a fractional (k, m)deleted graph. This result is best possible in some sense, and it is an extension of Zhou's previous results. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1533 / 1538
页数:6
相关论文
共 17 条
[1]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[2]   Some remarks about factors of graphs [J].
Correa, Jose R. ;
Matamala, Martin .
JOURNAL OF GRAPH THEORY, 2008, 57 (04) :265-274
[3]   BINDING NUMBERS OF GRAPHS AND THE EXISTENCE OF K-FACTORS [J].
KATERINIS, P ;
WOODALL, DR .
QUARTERLY JOURNAL OF MATHEMATICS, 1987, 38 (150) :221-228
[4]   Toughness and the existence of fractional k-factors of graphs [J].
Liu, Guizhen ;
Zhang, Lanju .
DISCRETE MATHEMATICS, 2008, 308 (09) :1741-1748
[5]   Fractional (g, f)-factors of graphs [J].
Liu, GZ ;
Zhang, LJ .
ACTA MATHEMATICA SCIENTIA, 2001, 21 (04) :541-545
[6]  
Scheinerman E. R., 2011, Fractional graph theory
[7]  
Woodall D. R., 1973, Journal of Combinatorial Theory, Series B, V15, P225, DOI 10.1016/0095-8956(73)90038-5
[8]  
[YU Jiguo 禹继国], 2006, [数学进展, Advances in Mathematics], V35, P621
[9]  
Zhou S.Z., UTILITAS MA IN PRESS
[10]   Neighbourhoods of independent sets for (a, b, k)-critical graphs [J].
Zhou, Sizhong ;
Xu, Yang .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 77 (02) :277-283