Multi-Objective Swarm Intelligence Trajectory Generation for a 7 Degree of Freedom Robotic Manipulator

被引:6
|
作者
Malik, Aryslan [1 ]
Henderson, Troy [1 ]
Prazenica, Richard [1 ]
机构
[1] Embry Riddle Aeronaut Univ, Aerosp Engn Dept, Daytona Beach, FL 32114 USA
关键词
PoE; machine learning; swarm; robot-manipulation; inverse kinematics; trajectory generation; INVERSE KINEMATICS; OPTIMIZATION;
D O I
10.3390/robotics10040127
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This work is aimed to demonstrate a multi-objective joint trajectory generation algorithm for a 7 degree of freedom (DoF) robotic manipulator using swarm intelligence (SI)-product of exponentials (PoE) combination. Given a priori knowledge of the end-effector Cartesian trajectory and obstacles in the workspace, the inverse kinematics problem is tackled by SI-PoE subject to multiple constraints. The algorithm is designed to satisfy finite jerk constraint on end-effector, avoid obstacles, and minimize control effort while tracking the Cartesian trajectory. The SI-PoE algorithm is compared with conventional inverse kinematics algorithms and standard particle swarm optimization (PSO). The joint trajectories produced by SI-PoE are experimentally tested on Sawyer 7 DoF robotic arm, and the resulting torque trajectories are compared.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Multi-objective cellular particle swarm optimization for wellbore trajectory design
    Zheng, Jun
    Lu, Chao
    Gao, Liang
    APPLIED SOFT COMPUTING, 2019, 77 : 106 - 117
  • [22] Improving productivity using a multi-objective optimization of robotic trajectory planning
    Llopis-Albert, Carlos
    Rubio, Francisco
    Valero, Francisco
    JOURNAL OF BUSINESS RESEARCH, 2015, 68 (07) : 1429 - 1431
  • [23] Multi-objective trajectory optimization of the manipulator transferring compliant sheet metal parts
    Yu, Luchuan
    Zhou, Shunqing
    Huang, Shenquan
    MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2024, 52 (04) : 2284 - 2296
  • [24] Multi-Objective Generation Dispatch Using Particle Swarm Optimisation
    Rani, C.
    Kumar, M. Rajesh
    Pavan, K.
    INDIA INTERNATIONAL CONFERENCE ON POWER ELECTRONIC S, 2006, : 421 - 424
  • [25] Robust Control Design for the Accurate Trajectory Tracking of Multi Degree of Freedom Robot Manipulator
    Abbasi, Saad Jamshed
    Khan, Hamza
    Lee, Min Cheol
    2021 18TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS (UR), 2021, : 375 - 379
  • [26] A parallel multi-objective swarm intelligence framework for Big Data analysis
    AbdelAziz, Amr Mohamed
    Ghany, Kareem Kamal A.
    Soliman, Taysir Hassan A.
    Sewisy, Adel Abu El-Magd
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2020, 63 (03) : 200 - 212
  • [27] Joint optimization of geophysical data using multi-objective swarm intelligence
    Pace, Francesca
    Godio, Alberto
    Santilano, Alessandro
    Comina, Cesare
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 218 (03) : 1502 - 1521
  • [28] Constrained Multi-Objective Aerodynamic Shape Optimization via Swarm Intelligence
    Zapotecas Martinez, Saul
    Arias-Montano, Alfredo
    Coello Coello, Carlos A.
    GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 81 - 88
  • [29] Dynamic trajectory generation via numerical multi-objective optimisation
    Seyr, Martin
    Jakubek, Stefan
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 83 - 88
  • [30] Sensitivity analysis based objective coordination of constrained multi-objective multi-degree-of-freedom optimization
    Yugeng Xi
    Hanyu Gu
    Science in China Series E: Technological Sciences, 1998, 41 : 592 - 599