Assessing characteristics of RNA amplification methods for single cell RNA sequencing

被引:25
作者
Dueck, Hannah R. [2 ]
Ai, Rizi [3 ]
Camarena, Adrian [4 ]
Ding, Bo [3 ]
Dominguez, Reymundo [5 ]
Evgrafov, Oleg V. [4 ]
Fan, Jian-Bing [6 ]
Fisher, Stephen A. [1 ]
Herstein, Jennifer S. [4 ]
Kim, Tae Kyung [7 ,8 ]
Kim, Jae Mun [4 ]
Lin, Ming-Yi [5 ]
Liu, Rui
Mack, William J. [10 ]
McGroty, Sean [1 ]
Nguyen, Joseph D.
Salathia, Neeraj
Shallcross, Jamie [1 ]
Souaiaia, Tade [4 ]
Spaethling, Jennifer M. [7 ]
Walker, Christopher P. [4 ]
Wang, Jinhui [7 ]
Wang, Kai [4 ]
Wang, Wei [3 ]
Wildberg, Andre [3 ]
Zheng, Lina [3 ]
Chow, Robert H. [5 ]
Eberwine, James
Knowles, James A. [4 ]
Zhang, Kun [9 ]
Kim, Junhyong [1 ]
机构
[1] Univ Penn, Dept Biol, 415 S Univ Ave, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Dept Genom & Computat Biol, Philadelphia, PA 19104 USA
[3] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[4] Univ Southern Calif, Keck Sch Med, Dept Psychiat & Behav Sci, Los Angeles, CA 90033 USA
[5] Univ Southern Calif, Zilkha Neurogenet Inst, Dept Physiol & Biophys, Los Angeles, CA USA
[6] Illumina Inc, San Diego, CA USA
[7] Univ Penn, Perelman Sch Med, Dept Pharmacol, Philadelphia, PA 19104 USA
[8] Allen Inst Brain Sci, Seattle, WA USA
[9] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[10] Univ Southern Calif, Zilkha Neurogenet Inst, Dept Neurol Surg, Los Angeles, CA USA
来源
BMC GENOMICS | 2016年 / 17卷
基金
美国国家科学基金会;
关键词
Single-cell RNA-sequencing; Biotechnology; Bioinformatics; Genomics; MONOALLELIC GENE-EXPRESSION; SEQ; NOISE;
D O I
10.1186/s12864-016-3300-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Recently, measurement of RNA at single cell resolution has yielded surprising insights. Methods for single-cell RNA sequencing (scRNA-seq) have received considerable attention, but the broad reliability of single cell methods and the factors governing their performance are still poorly known. Results: Here, we conducted a large-scale control experiment to assess the transfer function of three scRNA-seq methods and factors modulating the function. All three methods detected greater than 70% of the expected number of genes and had a 50% probability of detecting genes with abundance greater than 2 to 4 molecules. Despite the small number of molecules, sequencing depth significantly affected gene detection. While biases in detection and quantification were qualitatively similar across methods, the degree of bias differed, consistent with differences in molecular protocol. Measurement reliability increased with expression level for all methods and we conservatively estimate measurements to be quantitative at an expression level greater than similar to 5-10 molecules. Conclusions: Based on these extensive control studies, we propose that RNA-seq of single cells has come of age, yielding quantitative biological information.
引用
收藏
页数:22
相关论文
共 44 条
  • [1] Comparative analysis of RNA sequencing methods for degraded or low-input samples
    Adiconis, Xian
    Borges-Rivera, Diego
    Satija, Rahul
    DeLuca, David S.
    Busby, Michele A.
    Berlin, Aaron M.
    Sivachenko, Andrey
    Thompson, Dawn Anne
    Wysoker, Alec
    Fennell, Timothy
    Gnirke, Andreas
    Pochet, Nathalie
    Regev, Aviv
    Levin, Joshua Z.
    [J]. NATURE METHODS, 2013, 10 (07) : 623 - +
  • [2] Ambler G., 2015, mfp: Multivariable fractional polynomials
  • [3] Anders S., 2010, Htseq. Analyzing high-throughput sequencing data with python
  • [4] Differential expression analysis for sequence count data
    Anders, Simon
    Huber, Wolfgang
    [J]. GENOME BIOLOGY, 2010, 11 (10):
  • [5] HTSeq-a Python']Python framework to work with high-throughput sequencing data
    Anders, Simon
    Pyl, Paul Theodor
    Huber, Wolfgang
    [J]. BIOINFORMATICS, 2015, 31 (02) : 166 - 169
  • [6] Bhargava V, 2014, SCI REP, P4
  • [7] Brennecke P, 2013, NAT METHODS, V10, P1093, DOI [10.1038/nmeth.2645, 10.1038/NMETH.2645]
  • [8] Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity
    Chiu, Isaac M.
    Barrett, Lee B.
    Williams, Erika
    Strochlic, David E.
    Lee, Seungkyu
    Weyer, Andy D.
    Lou, Shan
    Bryman, Gregory
    Roberson, David P.
    Ghasemlou, Nader
    Piccoli, Cara
    Ahat, Ezgi
    Wang, Victor
    Cobos, Enrique J.
    Stucky, Cheryl L.
    Ma, Qiufu
    Liberles, Stephen D.
    Woolf, Clifford J.
    [J]. ELIFE, 2014, 3
  • [9] Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells
    Deng, Qiaolin
    Ramskold, Daniel
    Reinius, Bjorn
    Sandberg, Rickard
    [J]. SCIENCE, 2014, 343 (6167) : 193 - 196
  • [10] Fast Computation and Applications of Genome Mappability
    Derrien, Thomas
    Estelle, Jordi
    Marco Sola, Santiago
    Knowles, David G.
    Raineri, Emanuele
    Guigo, Roderic
    Ribeca, Paolo
    [J]. PLOS ONE, 2012, 7 (01):