Sequential auxiliary particle belief propagation

被引:0
|
作者
Briers, M [1 ]
Doucet, A [1 ]
Singh, SS [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
来源
2005 7TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), VOLS 1 AND 2 | 2005年
关键词
belief propagation; particle filter; Monte Carlo; sequential inference; graphical models;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper discloses a novel algorithm for efficient inference in undirected graphical models using Sequential Monte Carlo (SMC) based numerical approximation techniques. The methodology developed, titled "Auxiliary Particle Belief Propagation ", extends the applicability of the much celebrated (Loopy) Belief Propagation (LBP) algorithm to non-linear non-Gaussian models, whilst retaining a computational cost that is linear in the number of sample points (or particles). Furthermore, we provide an additional extension to this technique by analysing temporally evolving graphical models, a problem which remains largely unexplored in the scientific literature. The work presented is thus a general framework that can be applied to a plethora of novel distributedfusion problems. In this paper we apply our inference algorithm to the (sequential problem of) articulated object tracking.
引用
收藏
页码:705 / 711
页数:7
相关论文
共 50 条
  • [31] Belief Propagation, Bethe Approximation and Polynomials
    Straszak, Damian
    Vishnoi, Nisheeth K.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (07) : 4353 - 4363
  • [32] Implementing belief propagation in neural circuits
    Shon, AP
    Rao, RPN
    NEUROCOMPUTING, 2005, 65 : 393 - 399
  • [33] Stereo matching using belief propagation
    Sun, J
    Zheng, NN
    Shum, HY
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (07) : 787 - 800
  • [34] Bounds on the performance of belief propagation decoding
    Burshtein, D
    Miller, G
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (01) : 112 - 122
  • [35] Hardware-Efficient Belief Propagation
    Liang, Chia-Kai
    Cheng, Chao-Chung
    Lai, Yen-Chieh
    Chen, Liang-Gee
    Chen, Homer H.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2011, 21 (05) : 525 - 537
  • [36] Efficient Belief Propagation for Early Vision
    Pedro F. Felzenszwalb
    Daniel P. Huttenlocher
    International Journal of Computer Vision, 2006, 70 : 41 - 54
  • [37] Belief Propagation Algorithms on Noisy Hardware
    Huang, Chu-Hsiang
    Li, Yao
    Dolecek, Lara
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2015, 63 (01) : 11 - 24
  • [38] Dynamic background discrimination with belief propagation
    Zhao, JY
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 4342 - 4346
  • [39] Acyclic belief propagation for stereo matching
    Piovano L.
    Balossino N.
    Lucenteforte M.
    Pettiti G.
    Spertino M.
    Pattern Recognition and Image Analysis, 2009, 19 (3) : 508 - 527
  • [40] Improving belief propagation on graphs with cycles
    Yazdani, MR
    Hemati, S
    Banihashemi, AH
    IEEE COMMUNICATIONS LETTERS, 2004, 8 (01) : 57 - 59