Sequential auxiliary particle belief propagation

被引:0
|
作者
Briers, M [1 ]
Doucet, A [1 ]
Singh, SS [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
来源
2005 7TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), VOLS 1 AND 2 | 2005年
关键词
belief propagation; particle filter; Monte Carlo; sequential inference; graphical models;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper discloses a novel algorithm for efficient inference in undirected graphical models using Sequential Monte Carlo (SMC) based numerical approximation techniques. The methodology developed, titled "Auxiliary Particle Belief Propagation ", extends the applicability of the much celebrated (Loopy) Belief Propagation (LBP) algorithm to non-linear non-Gaussian models, whilst retaining a computational cost that is linear in the number of sample points (or particles). Furthermore, we provide an additional extension to this technique by analysing temporally evolving graphical models, a problem which remains largely unexplored in the scientific literature. The work presented is thus a general framework that can be applied to a plethora of novel distributedfusion problems. In this paper we apply our inference algorithm to the (sequential problem of) articulated object tracking.
引用
收藏
页码:705 / 711
页数:7
相关论文
共 50 条
  • [21] Regularized Gaussian belief propagation
    Francois Kamper
    Johan A. du Preez
    Sarel J. Steel
    Stephan Wagner
    Statistics and Computing, 2018, 28 : 653 - 672
  • [22] Noise predictive belief propagation
    Kaynak, MN
    Duman, TM
    Kurtas, EM
    IEEE TRANSACTIONS ON MAGNETICS, 2005, 41 (12) : 4427 - 4434
  • [23] Convex combination belief propagation
    Grim, Anna
    Felzenszwalb, Pedro
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 438
  • [24] Parallel vs. sequential belief propagation decoding of LDPC codes over GF(q) and Markov sources
    Yacov, N.
    Efraim, H.
    Kfir, H.
    Kanter, I.
    Shental, O.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 378 (02) : 329 - 335
  • [25] Convergence rate analysis of Gaussian belief propagation for Markov networks
    Zhang, Zhaorong
    Fu, Minyue
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2020, 7 (03) : 668 - 673
  • [26] Graph rigidity, cyclic belief propagation, and point pattern matching
    McAuley, Julian J.
    Caetano, Tiberio S.
    Barbosa, Marconi S.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (11) : 2047 - 2054
  • [27] Self-Guided Belief Propagation - A Homotopy Continuation Method
    Knoll, Christian
    Weller, Adrian
    Pernkopf, Franz
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 5139 - 5157
  • [28] Belief Propagation and LP Relaxation for Weighted Matching in General Graphs
    Sanghavi, Sujay
    Malioutov, Dmitry
    Willsky, Alan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (04) : 2203 - 2212
  • [29] Quantum graphical models and belief propagation
    Leifer, M. S.
    Poulin, D.
    ANNALS OF PHYSICS, 2008, 323 (08) : 1899 - 1946
  • [30] EFFICIENT BELIEF PROPAGATION FOR GRAPH MATCHING
    Onaran, Efe
    Villar, Soledad
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 9060 - 9064