bayesclust: An R Package for Testing and Searching for Significant Clusters

被引:0
|
作者
Gopal, Vikneswaran [1 ]
Fuentes, Claudio [2 ]
Casella, George [3 ]
机构
[1] IBM Res Collaboratory Singapore, Singapore 468048, Singapore
[2] Oregon State Univ, Dept Stat, Corvallis, OR 97331 USA
[3] Univ Florida, Dept Stat, Inst Food & Agr Sci, Gainesville, FL 32611 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2012年 / 47卷 / 14期
基金
美国国家科学基金会;
关键词
clustering; hierarchical; Bayes; R; NUMBER;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The detection and determination of clusters has been of special interest among researchers from different fields for a long time. In particular,assessing whether the clusters are significant is a question that has been asked by a number of experimenters. In Fuentes and Casella (2009), the authors put forth a new methodology for analyzing clusters. It tests the hypothesis II0: kappa - 1 versus II1: kappa - k in a Bayesian setting,where kappa denotes the number of clusters in a population. The bayesclust package implements this approach in R. Here we give an overview of the algorithm and a detailed description of the functions available in the package. The routines in bayesclust allow the user to test for the existence of clusters, and then pick out optimal partitionings of the data. We demonstrate the testing procedure with simulated datasets.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] Nbclust: An R Package for Determining the Relevant Number of Clusters in a Data Set
    Charrad, Malika
    Ghazzali, Nadia
    Boiteau, Veronique
    Niknafs, Azam
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 61 (06): : 1 - 36
  • [2] Optimization of a parallel permutation testing function for the SPRINT R package
    Petrou, Savvas
    Sloan, Terence M.
    Mewissen, Muriel
    Forster, Thorsten
    Piotrowski, Michal
    Dobrzelecki, Bartosz
    Ghazal, Peter
    Trew, Arthur
    Hill, Jon
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2011, 23 (17): : 2258 - 2268
  • [3] Flexible Scan Statistics for Detecting Spatial Disease Clusters: The rflexscan R Package
    Otani, Takahiro
    Takahashi, Kunihiko
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 99 (13): : 1 - 29
  • [4] ICGE: an R package for detecting relevant clusters and atypical units in gene expression
    Irigoien, Itziar
    Sierra, Basilio
    Arenas, Concepcion
    BMC BIOINFORMATICS, 2012, 13
  • [5] FarmTest: An R Package for Factor-Adjusted Robust Multiple Testing
    Bose, Koushiki
    Fan, Jianqing
    Ke, Yuan
    Pan, Xiaoou
    Zhou, Wen-Xin
    R JOURNAL, 2020, 12 (02): : 389 - 402
  • [6] actuar: An R package for actuarial science
    Dutang, Christophe
    Goulet, Vincent
    Pigeon, Mathieu
    JOURNAL OF STATISTICAL SOFTWARE, 2008, 25 (07): : 1 - 37
  • [7] Factor Analysis for Multiple Testing (FAMT): An R Package for Large-Scale Significance Testing under Dependence
    Causeur, David
    Friguet, Chloe
    Houee-Bigot, Magalie
    Kloareg, Maela
    JOURNAL OF STATISTICAL SOFTWARE, 2011, 40 (14): : 1 - 19
  • [8] Anthropometry: An R Package for Analysis of Anthropometric Data
    Vinue, Guillermo
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 77 (06): : 1 - 39
  • [9] R Package CEC
    Spurek, P.
    Kamieniecki, K.
    Tabor, J.
    Misztal, K.
    Smieja, M.
    NEUROCOMPUTING, 2017, 237 : 410 - 413
  • [10] The Assessment of Clustering on Weighted Networks with R Package clustAnalytics
    Arratia, Argimiro
    Renedo-Mirambell, Marti
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2022, 356 : 143 - 146