Anisotropic magnetoresistance in electrodeposited cobalt antidot arrays

被引:14
作者
Spada, E. R. [1 ]
Pereira, G. M. C. [1 ]
Jasinski, E. F. [1 ]
da Rocha, A. S. [1 ]
Schilling, O. F. [1 ]
Sartorelli, M. L. [1 ]
机构
[1] Univ Fed Santa Catarina, CFM, Dept Fis, LabSiN, BR-88040900 Florianopolis, SC, Brazil
关键词
nanosphere lithography; electrodeposition; antidot structure; anisotropic magnetoresistance;
D O I
10.1016/j.jmmm.2008.02.057
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanosphere lithography is a simple and accessible technique for nanostructuring of materials. Combined with electrodeposition, it allows the production of compact, ordered antidot networks. In contrast to other lithographic techniques, the resulting nanostructure shows periodicity also along the growth axis. Interesting results are expected for the magnetoresistive behavior of such structures as function of thickness, due to the confinement of electronic routes and the strong shape anisotropy. We were able to electrodeposit cobalt antidot structures of homogeneous and controlled thickness directly over silicon substrates. Room temperature anisotropic magnetoresistance (AMR) as function of thickness and nanosphere diameter are presented, with the magnetic field applied in plane, transverse to the applied current. An overlap of two effects is observed. At fields lower than 2 kOe typical hysteretic AMR peaks appear around the coercive field, and tend to disappear for thicker films. At higher fields, a reversible contribution, caused by the forced magnetization that rotates the spin away from the local current direction, lowers the magnetoresistance, before it reaches its saturation value. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:E253 / E256
页数:4
相关论文
共 10 条
[1]   Fabrication and magnetic properties of ordered macroporous nickel structures [J].
Hao, Yaowu ;
Zhu, F. Q. ;
Chien, C. L. ;
Searson, Peter C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (02) :D65-D69
[2]   Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly [J].
Kiziroglou, Michail E. ;
Li, Xiaoli ;
Gonzalez, David C. ;
de Groot, Cornelis H. ;
Zhukov, Alexander A. ;
de Groot, Peter A. J. ;
Bartlett, Philip N. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (11)
[3]   Large-area long-range ordered anisotropic magnetic nanostructure fabrication by photolithography [J].
Luo, Yong ;
Misra, Veena .
NANOTECHNOLOGY, 2006, 17 (19) :4909-4911
[4]   Evolution of magnetic and transport properties in pore-modified CoAlO antidot arrays [J].
Ma, Y. G. ;
Lim, S. L. ;
Ong, C. K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (04) :935-941
[5]  
TANAKA M, 2005, J APPL PHYS, V10, P10710
[6]   Current inhomogeneity effect in single-layer ferromagnetic antirectangular structures [J].
Wang, CC ;
Adeyeye, AO ;
Wu, YH ;
Jalil, MBA .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (02)
[7]   Magnetic antidot nanostructures: effect of lattice geometry [J].
Wang, CC ;
Adeyeye, AO ;
Singh, N .
NANOTECHNOLOGY, 2006, 17 (06) :1629-1636
[8]   Nickel antidot arrays on anodic alumina substrates [J].
Xiao, ZL ;
Han, CY ;
Welp, U ;
Wang, HH ;
Vlasko-Vlasov, VK ;
Kwok, WK ;
Miller, DJ ;
Hiller, JM ;
Cook, RE ;
Willing, GA ;
Crabtree, GW .
APPLIED PHYSICS LETTERS, 2002, 81 (15) :2869-2871
[9]   Oscillatory thickness dependence of the coercive field in magnetic three-dimensional antidot arrays [J].
Zhukov, AA ;
Goncharov, AV ;
de Groot, PAJ ;
Ghanem, MA ;
Bartlett, PN ;
Boardman, R ;
Fangohr, H ;
Novosad, V ;
Karapetrov, G .
APPLIED PHYSICS LETTERS, 2006, 88 (06)
[10]   Magnetic antidot arrays from self-assembly template methods [J].
Zhukov, AA ;
Goncharov, AV ;
de Groot, PAJ ;
Bartlett, PN ;
Ghanem, MA .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (10) :7322-7324