Disjointness of Mobius from asymptotically periodic functions

被引:0
|
作者
Wei, Fei [1 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
基金
中国博士后科学基金;
关键词
Asymptotically periodic function; mean state; Mobius function; Sarnak's Mobius Disjointness Conjecture; MULTIPLICATIVE FUNCTIONS; ENTROPY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate Sarnak's Mobius Disjointness Conjecture through asymptotically periodic functions. It is shown that Sarnak's conjecture for rigid dynamical systems is equivalent to the disjointness of Mobius from asymptotically periodic functions. We give sufficient conditions and a partial answer to the later one. As an application, we show that Sarnak's conjecture holds for a class of rigid dynamical systems, which improves an earlier result of Kanigowski-Lemanczyk-Radziwill.
引用
收藏
页码:863 / 922
页数:60
相关论文
共 50 条
  • [1] Measure complexity and Mobius disjointness
    Huang, Wen
    Wang, Zhiren
    Ye, Xiangdong
    ADVANCES IN MATHEMATICS, 2019, 347 : 827 - 858
  • [2] Disjointness of the Mobius Transformation and Mobius Function
    El Abdalaoui, El Houcein
    Shparlinski, Igor E.
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2019, 6 (01)
  • [3] Rigidity in dynamics and Mobius disjointness
    Kanigowski, Adam
    Lemanczyk, Mariusz
    Radziwill, Maksym
    FUNDAMENTA MATHEMATICAE, 2021, 255 (03) : 309 - 336
  • [4] Mobius disjointness conjecture for local dendrite maps
    El Abdalaoui, El Houcein
    Askri, Ghassen
    Marzougui, Habib
    NONLINEARITY, 2019, 32 (01) : 285 - 300
  • [5] MOBIUS DISJOINTNESS FOR NILSEQUENCES ALONG SHORT INTERVALS
    He, Xiaoguang
    Wang, Zhiren
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (06) : 3881 - 3917
  • [6] ON PSEUDO S-ASYMPTOTICALLY PERIODIC FUNCTIONS
    Pierri, Michelle
    Rolnik, Vanessa
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 87 (02) : 238 - 254
  • [7] A NOTE ON MOBIUS DISJOINTNESS FOR SKEW PRODUCTS ON A CIRCLE AND A NILMANIFOLD
    He, Xiaoguang
    Wang, Ke
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 107 (03) : 471 - 482
  • [8] On multiplicative functions resembling the Mobius function
    Maier, H.
    Sankaranarayanan, A.
    JOURNAL OF NUMBER THEORY, 2016, 163 : 75 - 88
  • [9] MOBIUS DISJOINTNESS FOR PRODUCT FLOWS OF RIGID DYNAMICAL SYSTEMS AND AFFINE LINEAR FLOWS
    Wei, Fei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (04) : 969 - 1007
  • [10] Multiplicative Functions Resembling the Mobius Function
    Liu, Qing Yang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (12) : 2316 - 2328